A groundwork for allostatic neuro-education

Lee Gerdes, Charles H Tegeler, Sung W Lee, Lee Gerdes, Charles H Tegeler, Sung W Lee

Abstract

We propose to enliven educational practice by marrying a conception of education as guided human development, to an advanced scientific understanding of the brain known as allostasis (stability through change). The result is a groundwork for allostatic neuro-education (GANE). Education as development encompasses practices including the organic (homeschooling and related traditions), cognitive acquisition (emphasis on standards and testing), and the constructivist (aimed to support adaptive creativity for both learner and society). Allostasis views change to be the norm in biology, defines success in contexts of complex natural environments rather than controlled settings, and identifies the brain as the organ of central command. Allostatic neuro-education contrasts with education focused dominantly on testing, or neuroscience based on homeostasis (stability through constancy). The GANE perspective is to view learners in terms of their neurodevelopmental trajectories; its objective is to support authentic freedom, mediated by competent, integrated, and expansive executive functionality (concordant with the philosophy of freedom of Rudolf Steiner); and its strategy is to be attuned to rhythms in various forms (including those of autonomic arousal described in polyvagal theory) so as to enable experiential excitement for learning. The GANE presents a variety of testable hypotheses, and studies that explore prevention or mitigation of the effects of early life adversity or toxic stress on learning and development may be of particular importance. Case studies are presented illustrating use of allostatic neurotechnology by an adolescent male carrying diagnoses of Asperger's syndrome and attention-deficit hyperactivity disorder, and a grade school girl with reading difficulties. The GANE is intended as a re-visioning of education that may serve both learners and society to be better prepared for the accelerating changes of the 21st century.

Keywords: RDoC; allostasis; executive function; neuro-education; neurodevelopment; neurotechnology; polyvagal theory; toxic stress.

Figures

FIGURE 1
FIGURE 1
Glossary of terms, concepts, and abbreviations presented in the paper, listed in the order in which they are principally discussed in the text.
FIGURE 2
FIGURE 2
Fast Fourier Transform spectral display of 1 min recording of brain electrical activity at left and right frontal poles (FP1 left, FP2 right), with eyes open, during the baseline assessment, from the 18-years-old learner described in the text. Individual color bars reflect amplitude averages for 1 min of recording, eyes closed, at rest, without stimulation. Columns to the left and right of the color bars denote 10 frequency ranges of aggregated data (00: < 1.0 Hz; 10: 1.0–3.0 Hz; 20: 3.0–5.5 Hz; 30: 5.5–7.5 Hz; 40: 7.5–10.0 Hz; 50: 10.0–12.0 Hz; 60: 12.0–15.0 Hz; 70: 15.0–23.0 Hz; 80: 23.0–36.0 Hz; 90: 36.0–48.0 Hz) and numerical values for amplitude averages in those ranges.
FIGURE 3
FIGURE 3
Fast Fourier Transform spectral display of 1 min recording of brain electrical activity at the left and right temporal lobe (T3 left, T4 right), with eyes closed, during the baseline assessment, from the 18-years-old learner described in text. Red box denotes the 23–36 Hz frequency range mentioned in the text. See Figure 2 legend for detailed explanation of data elements.
FIGURE 4
FIGURE 4
Fast Fourier Transform spectral display of brain electrical activity observed during the penultimate minute of the penultimate allostatic technology session at the left and right frontal poles (FP1 left, FP2 right), with eyes open, from the 18 years-old learner described in the text. See Figure 2 legend for detailed explanation of data elements.
FIGURE 5
FIGURE 5
Fast Fourier Transform spectral display of brain electrical activity observed during the penultimate minute of the penultimate allostatic technology session at the left and right temporal lobe (T3 left, T4 right), with eyes closed, from the 18 years-old learner described in the text. Red box denotes the 23–36 Hz frequency range mentioned in the text. See Figure 2 legend for detailed explanation of data elements.

References

    1. Ahmed R., McCaffery K. J., Aslani P. (2013). Factors influencing parental decision making about stimulant treatment for attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 23 163–178. 10.1089/cap.2012.0087
    1. Andersen S. L., Navalta C. P. (2011). Annual Research Review: new frontiers in developmental neuropharmacology: can long-term therapeutic effects of drugs be optimized through carefully timed early intervention? J. Child Psychol. Psychiatry 52 476–503. 10.1111/j.1469-7610.2011.02376.x
    1. Bialystok E., Craik F. l., Luk G. (2012). Bilingualism: consequences for mind and brain. Trends Cogn. Sci. 16 240–250. 10.1016/j.tics.2012.03.001
    1. Blum K., Chen A. L., Braverman E. R., Comings D. E., Chen T. J., Arcuri V., et al. (2008). Attention deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr. Dis. Treat. 4 893–918.
    1. Broyd S. J., Helps S. K., Sonuga-Barke E. J. (2011). Attention-induced deactivations in very low frequency EEG oscillations: differential localization according to ADHD symptom status. PLoS ONE 6:e17325 10.1371/journal.pone.0017325
    1. Bruer J. T. (1997). Education and the brain: a bridge too far. Educ. Res. 26 4–16. 10.3102/0013189X026008004
    1. Casey B. J., Oliveri M. E., Insel T. (2014). A neurodevelopmental perspective on the Research Domain Criteria (RDoC) framework. Biol. Psychiatry 76 350–353. 10.1016/j.biopsych.2014.01.006
    1. Chua A. (2011). Battle Hymn of the Tiger Mother. New York, NY: Penguin.
    1. Cooper R. E., Skirrow C., Tye C., McLoughlin G., Rijsdijk F., Banaschweski T., et al. (2014). The effect of methylphenidate on very low frequency electroencephalography oscillations in adult ADHD. Brain Cogn. 86 82–89. 10.1016/j.bandc.2014.02.001
    1. Craig A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10 59–70. 10.1038/nrn2555
    1. Cuthbert B. N., Insel T. R. (2013). Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11:126 10.1186/1741-7015-11-126
    1. Damasio A. (1994). Descartes’ Error: Emotion, Reason, and the Human Brain. New York, NY: G. P. Putnam’s Sons.
    1. Danese A., McEwen B. S. (2012). Adverse childhood experience, allostasis, allostatic load, and age-related disease. Physiol. Behav. 106 29–39. 10.1016/j.physbeh.2011.08.019
    1. Fenner P. J., Rapisardo M. B. (1999). Waldorf Education: a Family Guide. Amesbury, MA: Michaelmas Press.
    1. Fonseca-Mora M. C., Jara-Jimenez P., Gomez-Dominguez M. (2015). Musical plus phonological input for young foreign language readers. Front. Psychol. 6:286 10.3389/fpsyg.2015.00286
    1. Francois C., Grau-Sanchez J., Duarte E., Rodriguez-Fornells A. (2015). Musical training as an alternative and effective method for neuro-education and neuro-rehabilitation. Front. Psychol. 6:475 10.3389/fpsyg.2015.00475
    1. Gabrieli J. D., Ghosh S. S., Whitfield-Gabrieli S. (2015). Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85 11–26. 10.1016/j.neuron.2014.10.047
    1. Gerdes L., Gerdes P., Lee S. W., Tegeler C. H. (2013). HIRREM: a non-invasive, allostatic methodology for relaxation and auto-calibration of neural oscillations. Brain Behav. 3 193–205. 10.1002/brb3.116
    1. Goldberg E. (2001). The Executive Brain: Frontal Lobes and the Civilized Mind. New York, NY: Oxford University Press.
    1. Goncalves J., Baptista S., Silva A. P. (2014). Psychostimulants and brain function: a review of the relevant neurotoxic effects. Neuropharmacology 87 135–149. 10.1016/j.neuropharm.2014.01.006
    1. Hasler B. P., Dahl R. E., Holm S. M., Jakubcak J. L., Ryan N. D., Silk J. S., et al. (2012). Weekend-weekday advances in sleep timing are associated with altered reward-related brain function in healthy adolescents. Biol. Psychol. 91 334–341. 10.1016/j.biopsycho.2012.08.008
    1. Hsu N. S., Novick J. M., Jaeggi S. M. (2014). The development and malleability of executive control abilities. Front. Behav. Neurosci. 8:221 10.3389/fnbeh.2014.00221
    1. Immordino-Yang M. H., Yang X. F., Damasio H. (2014). Correlations between social-emotional feelings and anterior insula activity are independent from visceral states but influenced by culture. Front. Hum. Neurosci. 8:728 10.3389/fnhum.2014.00728
    1. Insel T. R. (2014). Mental disorders in childhood: shifting the focus from behavioral symptoms to neurodevelopmental trajectories. JAMA Psychiatry 311 1727–1728. 10.1001/jama.2014.1193
    1. Juster R. P., McEwen B. S., Lupien S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 35 2–16. 10.1016/j.neubiorev.2009.10.002
    1. Khalil A. K., Minces V., McLoughlin G., Chiba A. (2013). Group rhythmic synchrony and attention in children. Front. Psychol. 4:564 10.3389/fpsyg.2013.00564
    1. Kim S. H., Han D. H., Lee Y. S., Kim B. N., Cheong J. H., Han S. H. (2014). Baduk (the game of Go) improved cognitive function and brain activity in children with attention deficit hyperactivity disorder. Psychiatry Investig. 11 143–151. 10.4306/pi.2014.11.2.143
    1. Kohlberg L., Mayer R. (1972). Development as the aim of education. Harv. Educ. Rev. 42 449–496. 10.17763/haer.42.4.kj6q8743r3j00j60
    1. Kraus N., Hornickel J., Strait D. L., Slater J., Thompson E. (2014). Engagement in community music classes sparks neuroplasticity and language development in children from disadvantaged backgrounds. Front. Psychol. 5:1403 10.3389/fpsyg.2014.01403
    1. Lee S. W., Gerdes L., Tegeler C. L., Shaltout H. A., Tegeler C. H. (2014). A bihemispheric autonomic model for traumatic stress effects on health and behavior. Front. Psychol. 5:843 10.3389/fpsyg.2014.00843
    1. Luciana M. (2013). Adolescent brain development in normality and psychopathology. Dev. Psychopathol. 25 1325–1345. 10.1017/S0954579413000643
    1. Marco E. M., Adriani W., Ruocco L. A., Canese R., Sadile A. G., Laviola G. (2011). Neurobehavioral adapatations to methylphenidate: the issue of early adolescent exposure. Neurosci. Biobehav. Rev. 35 1722–1739. 10.1016/j.neubiorev.2011.02.011
    1. Martinez-Martinez L. A., Mora T., Vargas A., Fuentes-Iniestra M., Martinez-Lavin M. (2014). Sympathetic nervous system dysfunction in fibromyalgia, chronic fatigue syndrome, irritiable bowel syndrome, and interstitial cystitis: a review of case-control studies. J. Clin. Rheumatol. 20 146–150.
    1. May R. W., Sanchez-Gonzalez M. A., Fincham F. D. (2015). School burnout: increased sympathetic vasomotor tone and attenuated ambulatory diurnal blood pressure variability in young women. Stress 18 11–19. 10.3109/10253890.2014.969703
    1. McEwen B. S. (1998). Protective and damaging effects of stress mediators. N. Engl. J. Med. 338 171–179. 10.1056/NEJM199801153380307
    1. Miendlarzewska E. A., Trost W. J. (2014). How musical training affects cognitive development: rhythm, reward and other modulating variables. Front. Neurosci. 7:279 10.3389/fnins.2013.00279
    1. Molina B. S., Hinshaw S. P., Swanson J. M., Arnold L. E., Vitiello B., Jensen P. S., et al. (2009). The MTA at 8 years: prospective follow-up of children treated for combined-type ADHD in a multi-site study. J. Am. Acad. Child Adolesc. Psychiatry 48 484–500. 10.1097/CHI.0b013e31819c23d0
    1. O’Daly O. G., Joyce D., Tracy D. K., Azim A., Stephan K. E., Murray R. M., et al. (2014). Amphetamine sensitization alters reward processing in the human striatum and amygdala. PLoS ONE 9:e93955 10.1371/journal.pone.0093955
    1. Perlis M. L., Merica H., Smith M. T., Giles D. E. (2001). Beta EEG activity and insomnia. Sleep Med. Rev. 5 363–374. 10.1053/smrv.2001.0151
    1. Porges S. (2011). The Polyvagal Theory. New York, NY: W. W. Norton and Company.
    1. Pritchett L. (2001). Where has all the education gone? World Bank Econ. Rev. 15 367–391. 10.1093/wber/15.3.367
    1. Ripley A. (2014). The Smartest Kids in the World. New York, NY: Simon and Schuster.
    1. Rommel A. S., Halperin J. M., Mill J., Asheron P., Kuntsi J. (2013). Protection from genetic diathesis in attention-deficit/hyperactivity disorder: possible complementary roles of exercise. J. Am. Acad. Child Adolesc. Psychiatry 52 900–910. 10.1016/j.jaac.2013.05.018
    1. Roskam I., Stievenart M., Tessier R., Muntean A., Escobar M. J., Santelices M. P., et al. (2014). Another way of thinking about ADHD: the predictive role of early attachment deprivation in adolescents’ level of symptoms. Soc. Psychiatry Psychiatr. Epidemiol. 49 133–144. 10.1007/s00127-013-0685-z
    1. Roth W. T., Doberenz S., Dietel A., Conrad A., Mueller A., Wollburg E., et al. (2008). Sympathetic activation in broadly defined generalized anxiety disorder. J. Psychiatr. Res. 42 205–212. 10.1016/j.jpsychires.2006.12.003
    1. Saavedra Pérez H. C., Ikram M. A., Direk N., Prigerson H. G., Freak-Poli R., Verhaaren B. F., et al. (2015). Cognition, structural brain changes and complicated grief. A population-based study. Psychol. Med. 45 1389–1399. 10.1017/S0033291714002499
    1. Seravalle G., Mancia G., Grassi G. (2014). Role of the sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. High Blood Press. Cardiovasc. Prev. 21 89–105. 10.1007/s40292-014-0056-1
    1. Shankland R., Riou Franca L., Genolini C. M., Guelfi J., Ionescu S. (2009). Preliminary study on the role of alternative educational pathways in promoting use of problem-focused coping strategies. Eur. J. Psychol. Educ. 24 499–512. 10.1007/BF03178764
    1. Shonkoff J. P., Garner A. S. Committee on Psychosocial Aspects of Child and Family Health Committee on Early Childhood, Adoption and Dependent Care Section on Developmental and Behavioral Pediatrics. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics 129 e232–e246. 10.1542/peds.2011-2663
    1. Sigman M., Pena M., Goldin A. P., Ribeiro S. (2014). Neuroscience and education: prime time to build the bridge. Nat. Neurosci. 17 497–502. 10.1038/nn.3672
    1. Steiner R. (1894). The Philosophy of Freedom: the Basis for a Modern World Conception. Trans. M. Wilson. East Sussex: Rudolf Steiner Press.
    1. Sterling P. (2004). “Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics,” in Allostasis, Homeostasis, and the Costs of Physiological Adaptation, ed. Schulkin J. (Cambridge: Cambridge University Press; ), 17–64. 10.1017/cbo9781316257081.004
    1. Sterling P. (2012). Allostasis: a model of predictive regulation. Physiol. Behav. 106 5–15. 10.1016/j.physbeh.2011.06.004
    1. Sterling P. (2014). Homeostasis vs allostasis: implications for brain function and mental disorders. JAMA Psychiatry 71 1192–1193. 10.1001/jamapsychiatry.2014.1043
    1. Sterling P., Eyer J. (1988). “Allostasis: a new paradigm to explain arousal pathology,” in Handbook of Life Stress, Cognition, and Health, eds Fisher S., Reason J. (New York, NY: J. Wiley and Sons; ), 629–649.
    1. Suggate S. P., Schaughency E. A., Reese E. (2013). Children learning to read later catch up to children reading earlier. Early Child. Res. Q. 28 33–48. 10.1016/j.ecresq.2012.04.004
    1. Taleb N. (2007). The Black Swan: the Impact of the Highly Improbable. New York, NY: Random House.
    1. Taleb N. (2012). Antifragile: Things That Gain from Disorder. New York, NY: Random House.
    1. Taylor A. F., Kuo F. E. (2009). Children with attention deficits concentrate better after walk in the park. J. Atten. Disord. 12 402–409. 10.1177/1087054708323000
    1. Tegeler C. H., Shaltout H. A., Tegeler C. L., Gerdes L., Lee S. W. (2015). Rightward dominance in temporal high frequency electrical asymmetry corresponds to higher resting heart rate and lower baroreflex sensitivity in a heterogeneous population. Brain Behav. 5:e00343 10.1002/brb3.343
    1. Telzer E. H., Fulgini A. J., Lieberman M. D., Galvan A. (2013). The effects of poor quality sleep on brain function and risk taking in adolescence. Neuroimage 71 275–283. 10.1016/j.neuroimage.2013.01.025
    1. Urban K. R., Gao W. J. (2014). Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain. Front. Syst. Neurosci. 8:38 10.3389/fnsys.2014.00038
    1. Vanhove J. (2013). The critical period hypothesis in second language acquisition: a statistical critique and a reanalysis. PLoS ONE 8:e69172 10.1371/journal.pone.0069172
    1. Yakinci C., Mungen B., Durmaz Y., Balbay D., Karabiber H. (1997). Autonomic nervous system functions in children with nocturnal enuresis. Brain Dev. 19 485–487. 10.1016/S0387-7604(97)00069-7

Source: PubMed

3
Subskrybuj