Increased microvascular flow and foot sensation with mild continuous external compression

Armando Rosales-Velderrain, Michael Padilla, Charles H Choe, Alan R Hargens, Armando Rosales-Velderrain, Michael Padilla, Charles H Choe, Alan R Hargens

Abstract

Intermittent pneumatic compression of the calf and foot increases inflow to the popliteal artery and skin. We hypothesize that mild, continuous pneumatic compression of the lower extremities of type 2 diabetic patients increases microvascular blood flow to skin (SBF) and muscle (MBF) and improves sensation in feet. Data were collected on 19 healthy volunteers and 16 type 2 diabetic patients. Baseline values of SBF, MBF, and foot sensation were recorded in one leg. The lower extremity was then subjected to 30 mmHg of continuous external air pressure for 30 min, whereas SBF and MBF were continuously monitored. Sensation was reassessed after pressure was released. During 30 mmHg continuous external compression, the healthy control group significantly increased MBF by 39.8% (P < 0.01). Sensation of the foot in this group improved significantly by 49.8% (P < 0.01). In the diabetic group, there was a significant increase in MBF of 17.7% (P = 0.03). Also sensation improved statistically by 40.2% (P = 0.03). Importantly and counterintuitively, MBF and foot sensation both increase after 30 min of leg compression at 30 mmHg. Therefore, mild, continuous pneumatic compression may be a new approach for treating diabetic patients with compromised leg perfusion and sensation.

Keywords: Blood flow; Pneumatic; compression; lower limb; sensation.

Figures

Figure 1.
Figure 1.
Lower extremity placed within inflatable pressure chamber up to the distal third of the thigh.
Figure 2.
Figure 2.
Changes in skin and muscle microvascular blood flows and foot sensation in diabetic patients (dark) and normal, healthy controls (gray). Error bars represent standard errors of the mean (±SE).

References

    1. Bayliss W. M. 1902. On the local reactions of the arterial wall to changes of internal pressure. J. Physiol.; 28:220-231
    1. Bell‐Krotoski J., Tomancik E. 1987. The repeatability of testing with Semmes–Weinstein monofilaments. J Hand Surg. Am.; 12:155-161
    1. van Bemmelen P. S., Mattos M. A., Faught W. E., Mansour M. A., Barkmeier L. D., Hodgson K. J. 1994. Augmentation of blood flow in limbs with occlusive arterial disease by intermittent calf compression. J. Vasc. Surg.; 19:1052-1058
    1. Bochmann R. P., Seibel W., Haase E., Hietschold V., Rodel H., Deussen A. 2005. External compression increases forearm perfusion. J. Appl. Physiol.; 99:2337-2344
    1. Delis K. T. 2005. The case for intermittent pneumatic compression of the lower extremity as a novel treatment in arterial claudication. Perspect Vasc. Surg. Endovasc. Ther.; 17:29-42
    1. Delis K. T., Labropoulos N., Nicolaides A. N., Glenville B., Stansby G. 2000. Effect of intermittent pneumatic foot compression on popliteal artery haemodynamics. Eur. J. Vasc. Endovasc. Surg.; 19:270-277
    1. Dyck P. J., Kratz K. M., Karnes J. L., Litchy W. J., Klein R., Pach J. M. 1993. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort: the Rochester Diabetic Neuropathy Study. Neurology; 43:817-824
    1. Eze A. R., Comerota A. J., Cisek P. L., Holland B. S., Kerr R. P., Veeramasuneni R. 1996. Intermittent calf and foot compression increases lower extremity blood flow. Am. J. Surg.; 172:130-134
    1. Eze A. R., Cisek P. L., Holland B. S., Comerota A. J., Jr, Verramasuneni R., Comerota A. J. 1998. The contributions of arterial and venous volumes to increased cutaneous blood flow during leg compression. Ann. Vasc. Surg.; 12:182-186
    1. Feng Y., Schlosser F. J., Sumpio B. E. 2009. The Semmes Weinstein monofilament examination as a screening tool for diabetic peripheral neuropathy. J. Vasc. Surg.; 50:675-682
    1. Kamei N., Yamane K., Nakanishi S., Yamashita Y., Tamura T., Ohshita K. 2005. Effectiveness of Semmes‐Weinstein monofilament examination for diabetic peripheral neuropathy screening. J. Diabetes Complications; 19:47-53
    1. Kles K. A., Vinik A. I. 2006. Pathophysiology and treatment of diabetic peripheral neuropathy: the case for diabetic neurovascular function as an essential component. Curr. Diabetes Rev.; 2:131-145
    1. Labropoulos N., Leon L. R., Jr, Bhatti A., Melton S., Kang S. S., Mansour A. M. 2005. Hemodynamic effects of intermittent pneumatic compression in patients with critical limb ischemia. J. Vasc. Surg.; 42:710-716
    1. Mateus J., Hargens A. R. 2012. Photoplethysmography for non‐invasive in‐vivo measurement of bone hemodynamics. Physiol. Meas.; 33:1027-1042
    1. Mayrovitz H. N., Larsen P. B. 1997. Effects of compression bandaging on leg pulsatile blood flow. Clin. Physiol.; 17:105-117
    1. Morris R. J., Woodcock J. P. 2002. Effects of supine intermittent compression on arterial inflow to the lower limb. Arch. Surg.; 137:1269-1273
    1. Morris R. J., Woodcock J. P. 2004a. Evidence‐based compression: prevention of stasis and deep vein thrombosis. Ann. Surg.; 239:162-171
    1. Morris R. J., Woodcock J. P. 2004b. Intermittent venous compression, and the duration of hyperaemia in the common femoral artery. Clin. Physiol. Funct. Imaging; 24:237-242
    1. Mulvany M. J., Aalkjaer C. 1990. Structure and function of small arteries. Physiol. Rev.; 70:921-961
    1. Reneman R. S., Slaaf D. W., Lindbom L., Tangelder G. J., Arfors K. E. 1980. Muscle blood flow disturbances produced by simultaneously elevated venous and total muscle tissue pressure. Microvasc. Res.; 20:307-318
    1. Rizzoni D., Rosei E. A. 2009. Small artery remodeling in diabetes mellitus. Nutr. Metab. Cardiovasc. Dis.; 19:587-592
    1. Trent J. T., Falabella A., Eaglstein W. H., Kirsner R. S. 2005. Venous ulcers: pathophysiology and treatment options. Ostomy Wound Manage.; 51:38-54‐
    1. Zhang Q., Lindberg L. G., Kadefors R., Styf J. 2001a. A non‐invasive measure of changes in blood flow in the human anterior tibial muscle. Eur. J. Appl. Physiol.; 84:448-452
    1. Zhang Q., Styf J., Lindberg L. G. 2001b. Effects of limb elevation and increased intramuscular pressure on human tibialis anterior muscle blood flow. Eur. J. Appl. Physiol.; 85:567-571

Source: PubMed

3
Subskrybuj