Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR)

Tobias Wengenmayer, Stephan Rombach, Florian Ramshorn, Paul Biever, Christoph Bode, Daniel Duerschmied, Dawid L Staudacher, Tobias Wengenmayer, Stephan Rombach, Florian Ramshorn, Paul Biever, Christoph Bode, Daniel Duerschmied, Dawid L Staudacher

Abstract

Background: Venoarterial extracorporeal membrane oxygenation (VA-ECMO) support under extracorporeal cardiopulmonary resuscitation (eCPR) is the last option and may be offered to selected patients. Several factors predict outcome in these patients, including initial heart rhythm, comorbidities, and bystander cardiopulmonary resuscitation (CPR). We evaluated outcomes of all VA-ECMO patients treated within the last 5 years at our center in respect to low-flow duration during CPR.

Methods: We report retrospective registry data on all patients with eCPR treated at a university hospital between October 2010 and May 2016.

Results: A total of 133 patients (mean age 58.7 ± 2.6 years, Simplified Acute Physiology Score II score at admission 48.1 ± 3.4) were included in the analysis. The indication for eCPR was either in-hospital or out-of-hospital cardiac arrest without return of spontaneous circulation (n = 74 and 59, respectively). There was a significant difference in survival rates between groups (eCPR in-hospital cardiac arrest [IHCA] 18.9%, eCPR out-of-hospital cardiac arrest [OHCA] 8.5%; p < 0.042). Mean low-flow duration (i.e., duration of mechanical CPR until VA-ECMO support) was 59.6 ± 5.0 minutes in all patients and significantly shorter in IHCA patients than in OHCA patients (49.6 ± 5.9 vs. 72.2 ± 7.4 minutes, p = 0.001). Low-flow time strongly correlated with survival (p < 0.001) and was an independent predictor of mortality.

Conclusions: Time to full support is an important and alterable predictor of patient survival in eCPR, suggesting that VA-ECMO therapy should be established as fast as possible in the selected patients destined for eCPR.

Keywords: Cardiac arrest; Chest compression; ECLS; Low flow; Outcome; Venoarterial extracorporeal membrane oxygenation.

Figures

Fig. 1
Fig. 1
Mean survival of all extracorporeal cardiopulmonary resuscitation patients. OHCA Out-of-hospital cardiac arrest, IHCA In-hospital cardiac arrest
Fig. 2
Fig. 2
Scatterplot of low-flow time in survivors and nonsurvivors (*** p = 0.003). Low-flow time means duration of mechanical cardiopulmonary resuscitation before full extracorporeal membrane oxygenation support
Fig. 3
Fig. 3
Scatterplot of low-flow time in out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA) patients (*** p = 0.001). Low-flow time means duration of mechanical cardiopulmonary resuscitation before full extracorporeal membrane oxygenation support
Fig. 4
Fig. 4
Mean survival for extracorporeal cardiopulmonary resuscitation patients after 6–20, 20–45, 45–60, and 60–135 minutes of mechanical cardiopulmonary resuscitation (CPR) (*** p = 0.001)
Fig. 5
Fig. 5
Estimated survival rates for extracorporeal membrane oxygenation (eCPR) patients after every given low-flow time (red line). For comparison, data from Goto et al. [16] representing survival after mechanical cardiopulmonary resuscitation (CPR) are included (dashed blue line)

References

    1. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet. 2013;382:1638–45. doi: 10.1016/S0140-6736(13)61783-3.
    1. Reynolds JC, Frisch A, Rittenberger JC, Callaway CW. Duration of resuscitation efforts and functional outcome after out-of-hospital cardiac arrest: when should we change to novel therapies? Circulation. 2013;128:2488–94. doi: 10.1161/CIRCULATIONAHA.113.002408.
    1. Nagao K, Nonogi H, Yonemoto N, Gaieski DF, Ito N, Takayama M, et al. Duration of prehospital resuscitation efforts after out-of-hospital cardiac arrest. Circulation. 2016;133:1386–96. doi: 10.1161/CIRCULATIONAHA.115.018788.
    1. Kim SJ, Kim HJ, Lee HY, Ahn HS, Lee SW. Comparing extracorporeal cardiopulmonary resuscitation with conventional cardiopulmonary resuscitation: a meta-analysis. Resuscitation. 2016;103:106–16. doi: 10.1016/j.resuscitation.2016.01.019.
    1. Kane DA, Thiagarajan RR, Wypij D, Scheurer MA, Fynn-Thompson F, Emani S, et al. Rapid-response extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in children with cardiac disease. Circulation. 2010;122(11 Suppl):S241–8. doi: 10.1161/CIRCULATIONAHA.109.928390.
    1. Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg. 2014;97:610–6. doi: 10.1016/j.athoracsur.2013.09.008.
    1. Karagiannidis C, Brodie D, Strassmann S, Stoelben E, Philipp A, Bein T, et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med. 2016;42:889–96. doi: 10.1007/s00134-016-4273-z.
    1. Staudacher DL, Gold W, Biever PM, Bode C, Wengenmayer T. Early fluid resuscitation and volume therapy in venoarterial extracorporeal membrane oxygenation. J Crit Care. 2016;37:130–5. doi: 10.1016/j.jcrc.2016.09.017.
    1. Chen YS, Lin JW, Yu HY, Ko WJ, Jerng JS, Chang WT, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–61. doi: 10.1016/S0140-6736(08)60958-7.
    1. Shin TG, Choi JH, Jo IJ, Sim MS, Song HG, Jeong YK, et al. Extracorporeal cardiopulmonary resuscitation in patients with inhospital cardiac arrest: a comparison with conventional cardiopulmonary resuscitation. Crit Care Med. 2011;39:1–7. doi: 10.1097/CCM.0b013e3181feb339.
    1. Johnson NJ, Acker M, Hsu CH, Desai N, Vallabhajosyula P, Lazar S, et al. Extracorporeal life support as rescue strategy for out-of-hospital and emergency department cardiac arrest. Resuscitation. 2014;85:1527–32. doi: 10.1016/j.resuscitation.2014.08.028.
    1. Distelmaier K, Schrutka L, Binder C, Steinlechner B, Heinz G, Lang IM, et al. Cardiac arrest does not affect survival in post-operative cardiovascular surgery patients undergoing extracorporeal membrane oxygenation. Resuscitation. 2016;104:24–7. doi: 10.1016/j.resuscitation.2016.03.028.
    1. Wu JP, Gu DY, Wang S, Zhang ZJ, Zhou JC, Zhang RF. Good neurological recovery after rescue thrombolysis of presumed pulmonary embolism despite prior 100 minutes CPR. J Thorac Dis. 2014;6:E289–93.
    1. Goldberger ZD, Chan PS, Berg RA, Kronick SL, Cooke CR, Lu M, et al. Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study. Lancet. 2012;380:1473–81. doi: 10.1016/S0140-6736(12)60862-9.
    1. Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, Truhlář A, Wyllie J, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive Summ Resuscitation. 2015;95:1–80.
    1. Goto Y, Funada A, Goto Y. Relationship between the duration of cardiopulmonary resuscitation and favorable neurological outcomes after out-of-hospital cardiac arrest: a prospective, nationwide, population-based cohort study. J Am Heart Assoc. 2016;5:e002819. doi: 10.1161/JAHA.115.002819.
    1. Rubertsson S, Lindgren E, Smekal D, Östlund O, Silfverstolpe J, Lichtveld RA, et al. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. 2014;311:53–61. doi: 10.1001/jama.2013.282538.
    1. Perkins GD, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, et al. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet. 2015;385:947–55. doi: 10.1016/S0140-6736(14)61886-9.
    1. Wik L, Olsen JA, Persse D, Sterz F, Lozano M, Brouwer MA, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest: the randomized CIRC trial. Resuscitation. 2014;85:741–8. doi: 10.1016/j.resuscitation.2014.03.005.

Source: PubMed

3
Subskrybuj