Burden of oral anticoagulation in embolic stroke of undetermined source without atrial fibrillation

Klaus K Witte, Georgios Tsivgoulis, Matthew R Reynolds, Stelios I Tsintzos, Simon Eggington, Eleni Ismyrloglou, Julie Lyon, Marianne Huynh, Marta Egea, Bonnie de Brouwer, Paul D Ziegler, Noreli Franco, Rashmi Joglekar, Sarah C Rosemas, Shufeng Liu, Vincent Thijs, Klaus K Witte, Georgios Tsivgoulis, Matthew R Reynolds, Stelios I Tsintzos, Simon Eggington, Eleni Ismyrloglou, Julie Lyon, Marianne Huynh, Marta Egea, Bonnie de Brouwer, Paul D Ziegler, Noreli Franco, Rashmi Joglekar, Sarah C Rosemas, Shufeng Liu, Vincent Thijs

Abstract

Objective: Prevention of recurrent stroke in patients with embolic stroke of undetermined source (ESUS) is challenging. The advent of safer anticoagulation in the form of direct oral anticoagulants (DOACs) has prompted exploration of prophylactic anticoagulation for all ESUS patients, rather than anticoagulating just those with documented atrial fibrillation (AF). However, recent trials have failed to demonstrate a clinical benefit, while observing increased bleeding. We modeled the economic impact of anticoagulating ESUS patients without documented AF across multiple geographies.

Methods: CRYSTAL-AF trial data were used to assess ischaemic stroke event rates in ESUS patients confirmed AF-free after long-term monitoring. Anticipated bleeding event rates (including both minor and major bleeds) with aspirin, dabigatran 150 mg, and rivaroxaban 20 mg were sourced from published meta-analyses, whilst a 30% ischaemic stroke reduction for both DOACs was assumed. Cost data for clinical events and pharmaceuticals were collected from the local payer perspective.

Results: Compared with aspirin, dabigatran and rivaroxaban resulted in 17.9 and 29.9 additional bleeding events per 100 patients over a patient's lifetime, respectively. Despite incorporating into our model the proposed 30% reduction in ischaemic stroke risk, both DOACs were cost-additive over patient lifetime, as the costs of bleeding events and pharmaceuticals outweighed cost savings associated with the reduction in ischaemic strokes. DOACs added £5953-£7018 per patient (UK), €6683-€7368 (Netherlands), €4933-€9378 (Spain), AUD$5353-6539 (Australia) and $26,768-$32,259 (US) of payer cost depending on the agent prescribed. Additionally, in the U.S. patient pharmacy co-payments ranged from $2468-$12,844 depending on agent and patient plan. In all settings, cost-savings could not be demonstrated even when the modelling assumed 100% protection from recurrent ischaemic strokes, due to the very low underlying risk of recurrent ischaemic stroke in this population (1.27 per 100 patient-years).

Conclusions: Anticoagulation of non-AF patients may cause excess bleeds and add substantial costs for uncertain benefits, suggesting a personalised approach to anticoagulation in ESUS patients.

Trial registration: ClinicalTrials.gov NCT00924638.

Conflict of interest statement

KKW has received unconditional research funding from Medtronic to the University of Leeds for a PhD Fellowship program and consultancy or speaker fees from Medtronic, Novartis, AstraZeneca, Pfizer, Napp, Abbott, Cardiac Dimensions, and Microport. GT reports no disclosures. VT has received speaker and consultant fees from Boehringer Ingelheim, Bayer, Pfizer, Bristol-Myers Squibb, and Medtronic. MR has received consultancy fees from Medtronic. SIT, SE, EI, RS, JL, RJ, MH, ME, BdB, PDZ, NF, and SL are employees of, and hold shares of, Medtronic.

References

    1. Adams HP Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993;24(1):35–41.
    1. Landau WM, Nassief A. Editorial comment–time to burn the TOAST. Stroke. 2005;36(4):902–904. doi: 10.1161/str.36.4.902.
    1. Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol. 2015;14(9):903–913. doi: 10.1016/S1474-4422(15)00132-5.
    1. Perera KS, Sharma M, Connolly SJ, Wang J, Gold MR, Hohnloser SH, et al. Stroke type and severity in patients with subclinical atrial fibrillation: an analysis from the Asymptomatic Atrial Fibrillation and Stroke Evaluation in Pacemaker Patients and the Atrial Fibrillation Reduction Atrial Pacing Trial (ASSERT) Am Heart J. 2018;201:160–163. doi: 10.1016/j.ahj.2018.03.027.
    1. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O'Donnell MJ, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13(4):429–438. doi: 10.1016/S1474-4422(13)70310-7.
    1. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–2486. doi: 10.1056/NEJMoa1313600.
    1. Verma N, Ziegler PD, Liu S, Passman RS. Incidence of atrial fibrillation among patients with an embolic stroke of undetermined source: Insights from insertable cardiac monitors. Int J Stroke. 2018;14(2):146–153. doi: 10.1177/1747493018798554.
    1. Valentin F, Lars ER, David SC, Harry JC, Anne BC, Kenneth AE, et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation 2014: executive summary. Circulation. 2006;114(7):700–752. doi: 10.1161/CIRCULATIONAHA.106.177031.
    1. Craig TJ, Wann LS, Hugh C, Lin YC, Joaquin EC, Joseph CC, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation. Circulation 2019.
    1. Ahlsson A, Casadei B, Van Putte B, Popescu BA, Atar D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–2962. doi: 10.1093/eurheartj/ehw210.
    1. Mohr JP, Thompson JL, Lazar RM, Levin B, Sacco RL, Furie KL, et al. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med. 2001;345(20):1444–1451. doi: 10.1056/NEJMoa011258.
    1. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005;352(13):1305–1316. doi: 10.1056/NEJMoa043033.
    1. Homma S, Thompson JL, Pullicino PM, Levin B, Freudenberger RS, Teerlink JR, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012;366(20):1859–1869. doi: 10.1056/NEJMoa1202299.
    1. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. J Med. 2009;361(12):1139–1151.
    1. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. J Med. 2011;365(10):883–891.
    1. Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. J Med. 2011;365(11):981–992.
    1. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. J Med. 2013;369(22):2093–2104.
    1. López-López JA, Sterne JA, Thom HH, et al. Oral anticoagulants for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis, and cost effectiveness analysis. BMJ. 2017;359:j5058. doi: 10.1136/bmj.j5058.
    1. Liberato NL, Marchetti M. Cost-effectiveness of non-vitamin K antagonist oral anticoagulants for stroke prevention in non-valvular atrial fibrillation: a systematic and qualitative review. Expert Rev Pharmacoecon Outcomes Res. 2016;16(2):221–235. doi: 10.1586/14737167.2016.1147351.
    1. Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med. 2018;378(23):2191–2201. doi: 10.1056/NEJMoa1802686.
    1. Diener HC, Sacco RL, Easton JD, Granger CB, Bernstein RA, Uchiyama S, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med. 2019;380(20):1906–1917. doi: 10.1056/NEJMoa1813959.
    1. Diamantopoulos A, Sawyer LM, Lip GY, Witte KK, Reynolds MR, Fauchier L, et al. Cost-effectiveness of an insertable cardiac monitor to detect atrial fibrillation in patients with cryptogenic stroke. Int J Stroke. 2016;11(3):302–312. doi: 10.1177/1747493015620803.
    1. Tawfik A, Bielecki JM, Krahn M, Dorian P, Hoch JS, Boon H, et al. Systematic review and network meta-analysis of stroke prevention treatments in patients with atrial fibrillation. Clin Pharmacol. 2016;8:93–107.
    1. Kaatz S, Ahmad D, Spyropoulos AC, Schulman S, the Subcommittee on Control of A Definition of clinically relevant non-major bleeding in studies of anticoagulants in atrial fibrillation and venous thromboembolic disease in non-surgical patients: communication from the SSC of the ISTH. J Thrombosis Haemostasis. 2015;13(11):2119–2126. doi: 10.1111/jth.13140.
    1. Shireman TI, Wang K, Saver JL, Goyal M, Bonafe A, Diener HC, et al. Cost-Effectiveness of Solitaire Stent Retriever Thrombectomy for Acute Ischemic Stroke: Results From the SWIFT-PRIME Trial (Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke) Stroke. 2017;48(2):379–387. doi: 10.1161/STROKEAHA.116.014735.
    1. Luengo-Fernandez R, Paul NL, Gray AM, et al. Population-based study of disability and institutionalization after transient ischemic attack and stroke: 10-year results of the Oxford Vascular Study. Stroke. 2013;44:2854–2861. doi: 10.1161/STROKEAHA.113.001584.
    1. Baron Esquivias G, Escolar Albaladejo G, Zamorano JL, Betegon Nicolas L, Canal Fontcuberta C, de Salas-Cansado M, et al. Cost-effectiveness analysis comparing apixaban and acenocoumarol in the prevention of stroke in patients with nonvalvular atrial fibrillation in Spain. Rev Esp Cardiol (Engl Ed) 2015;68(8):680–690. doi: 10.1016/j.recesp.2014.08.010.
    1. Australian Medical Services Advisory Committee (MSAC). Public Summary Document: Implantable loop recorders for diagnosis of atrial fibrillation in cryptogenic stroke. Published April 7, 2017. Available at: .
    1. Tsivgoulis G, Katsanos AH, Köhrmann M, Caso V, Perren F, Palaiodimou L, Deftereos S, Giannopoulos S, Ellul J, Krogias C, Mavridis D, Triantafyllou S, Alexandrov AW, Schellinger PD, Alexandrov AV. Duration of implantable cardiac monitoring and detection of atrial fibrillation in ischemic stroke patients: a systematic review and meta-analysis. J Stroke. 2019;21(3):302–311. doi: 10.5853/jos.2019.01067.
    1. Kamel H, Okin PM, Elkind MS, Iadecola C. Atrial fibrillation and mechanisms of stroke: time for a new model. Stroke. 2016;47(3):895–900. doi: 10.1161/STROKEAHA.115.012004.
    1. Yaghi S, Song C, Gray WA, Furie KL, Elkind MS, Kamel H. Left atrial appendage function and stroke risk. Stroke. 2015;46(12):3554–3559. doi: 10.1161/STROKEAHA.115.011273.
    1. Tsivgoulis G, Katsanos AH, Köhrmann M, Caso V, Lemmens R, Tsioufis K, Paraskevas GP, Bornstein NM, Schellinger PD, Alexandrov AV, Krogias C. Embolic strokes of undetermined source: theoretical construct or useful clinical tool? Ther Adv Neurol Disord. 2019;12:1756286419851381. doi: 10.1177/1756286419851381.
    1. Kamel H, Merkler AE, Iadecola C, Gupta A, Navi BB. Tailoring the approach to embolic stroke of undetermined source: a review. JAMA Neurol. 2019;76:855–861. doi: 10.1001/jamaneurol.2019.0591.
    1. White HD, Gruber M, Feyzi J, Kaatz S, Tse HF, Husted S, et al. Comparison of outcomes among patients randomized to warfarin therapy according to anticoagulant control: results from SPORTIF III and V. Arch Intern Med. 2007;167(3):239–245. doi: 10.1001/archinte.167.3.239.
    1. Amarenco P, Davis S, Jones EF, Cohen AA, Heiss WD, Kaste M, Laouénan C, Young D, Macleod M, Donnan GA, Aortic Arch Related Cerebral Hazard Trial Investigators Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke. 2014;45(5):1248–1257. doi: 10.1161/STROKEAHA.113.004251.
    1. Tsivgoulis G, Katsanos AH, MacGrory B, et al. Prolonged Cardiac Rhythm Monitoring and Secondary Stroke Prevention in Patients With Cryptogenic Cerebral Ischemia. Stroke. 2019;50:1–6. doi: 10.1161/01.str.0000550737.21976.fe.
    1. Triantafyllou S, Katsanos AH, Dilaveris P, et al. Implantable cardiac monitoring in the secondary prevention of cryptogenic stroke. Ann Neurol. 2020;88(5):946–955. doi: 10.1002/ana.25886.

Source: PubMed

3
Subskrybuj