Clinically important improvement thresholds for Harris Hip Score and its ability to predict revision risk after primary total hip arthroplasty

Jasvinder A Singh, Cathy Schleck, Scott Harmsen, David Lewallen, Jasvinder A Singh, Cathy Schleck, Scott Harmsen, David Lewallen

Abstract

Background: Some aspects of validity are missing for the Harris Hip Score (HHS). Our objective was to examine the clinically meaningful change thresholds, responsiveness and the predictive ability of the HHS questionnaire.

Methods: We included a cohort of patients who underwent primary total hip arthroplasty (THA) and responded to the HHS preoperatively and at 2- or 5-year post-THA (change score) to examine the clinically meaningful change thresholds (Minimal clinically important improvement, MCII; and moderate improvement), responsiveness (effect size (ES) and standardized response mean (SRM)) based on pre- to post-operative change and the predictive ability of change score or absolute postoperative score at 2- and 5-years post-THA for future revision.

Results: Two thousand six hundred sixty-seven patients with a mean age of 64 years completed baseline HHS; 1036 completed both baseline and 2-year HHS and 669 both baseline and 5-year HHS. MCII and moderate improvement thresholds ranged 15.9-18 points and 39.6-40.1 points, respectively. ES was 3.12 and 3.02 at 2- and 5-years; respective SRM was 2.73 and 2.52. There were 3195 hips with HHS scores at 2-years and 2699 hips with HHS scores at 5-years (regardless of the completion of baseline HHS; absolute postoperative scores). Compared to patients with absolute HHS scores of 81-100 (score range, 0-100), patients with scores <55 at 2- and 5-years had higher hazards (95 % confidence interval) of subsequent revision, 4.34 (2.14, 7.95; p < 0.001) and 3.08 (1.45, 5.84; p = 0.002), respectively. Compared to HHS score improvement of >50 points from preoperative to 2-years post-THA, lack of improvement/worsening or 1-20 point improvement were associated with increased hazards of revision, 18.10 (1.41, 234.83; p = 0.02); and 6.21 (0.81, 60.73; p = 0.10), respectively.

Conclusions: HHS is a valid measure of THA outcomes and is responsive to change. Both absolute HHS postoperative scores and HHS score change postoperatively are predictive of revision risk post-primary THA. We defined MCID and moderate improvement thresholds for HHS in this study.

Keywords: Clinically important improvement; Discriminant ability; Harris Hip Score; MCID; MCII; Minimal clinically important difference; Minimal clinically important improvement; Predictability; Responsiveness; Total Hip Arthroplasty.

Figures

Fig. 1
Fig. 1
Patient selection for cohorts requiring only 2/5-year HHS scores and those requiring both preoperative and 2/5-year scores
Fig. 2
Fig. 2
Implant survival is shown for different categories of absolute (panels a and b) or change HHS scores (panels c and d), with follow-up up to 10 years post-THA. Follow-up starts at ≥ 731 days post-surgery for 2-year and ≥ 1826 days for 5-year (Day 0 for all revision analyses), i.e., only after the administration of the 2- and 5-year HHS survey

References

    1. Healthcare Cost and Utilization Project (HCUP). HCUP Facts and Figures 2009- Section 3: Inpatient Hospital Stays by Procedure. Exhibit 3.1 Most Frequent All-listed Procedures. . Accessed 3 June 2016.
    1. Report to the Chairman, Committee on Finance, U.S. Senate. Medicare. Lack of Price Transparency May Hamper Hospitals’ Ability to Be Prudent Purchasers of Implantable Medical Devices. GAO-12-126. . Accessed 3 June 2016.
    1. Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am. 1969;51(4):737–55.
    1. Riddle DL, Stratford PW, Singh JA, Strand CV. Variation in outcome measures in hip and knee arthroplasty clinical trials: a proposed approach to achieving consensus. J Rheumatol. 2009;36(9):2050–6. doi: 10.3899/jrheum090356.
    1. Soderman P, Malchau H. Is the Harris hip score system useful to study the outcome of total hip replacement? Clin Orthop Relat Res. 2001;384:189–97. doi: 10.1097/00003086-200103000-00022.
    1. Soderman P, Malchau H, Herberts P. Outcome of total hip replacement: a comparison of different measurement methods. Clin Orthop Relat Res. 2001;390:163–72. doi: 10.1097/00003086-200109000-00019.
    1. Kavanagh BF, Fitzgerald RH., Jr Clinical and roentgenographic assessment of total hip arthroplasty. A new hip score. Clin Orthop Relat Res. 1985;193:133–40.
    1. Wright JG, Young NL. A comparison of different indices of responsiveness. J Clin Epidemiol. 1997;50(3):239–46. doi: 10.1016/S0895-4356(96)00373-3.
    1. Shields RK, Enloe LJ, Evans RE, Smith KB, Steckel SD. Reliability, validity, and responsiveness of functional tests in patients with total joint replacement. Phys Ther. 1995;75(3):169–76.
    1. Shi HY, Chang JK, Wong CY, Wang JW, Tu YK, Chiu HC, Lee KT. Responsiveness and minimal important differences after revision total hip arthroplasty. BMC Musculoskelet Disord. 2010;11:261. doi: 10.1186/1471-2474-11-261.
    1. Hoeksma HL, Van Den Ende CH, Ronday HK, Heering A, Breedveld FC. Comparison of the responsiveness of the Harris Hip Score with generic measures for hip function in osteoarthritis of the hip. Ann Rheum Dis. 2003;62(10):935–8. doi: 10.1136/ard.62.10.935.
    1. Singh J, Sloan JA, Johanson NA. Challenges with health-related quality of life assessment in arthroplasty patients: problems and solutions. J Am Acad Orthop Surg. 2010;18(2):72–82. doi: 10.5435/00124635-201002000-00002.
    1. Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9. doi: 10.1037/0033-2909.112.1.155.
    1. Dworkin RH, Turk DC, McDermott MP, Peirce-Sandner S, Burke LB, Cowan P, Farrar JT, Hertz S, Raja SN, Rappaport BA, et al. Interpreting the clinical importance of group differences in chronic pain clinical trials: IMMPACT recommendations. Pain. 2009;146(3):238–44. doi: 10.1016/j.pain.2009.08.019.
    1. Singh JA, Schleck C, Harmsen WS, Lewallen D. Validation of the Mayo Hip Score: construct validity, reliability and responsiveness to change. BMC Musculoskelet Disord. 2016. (In Press).
    1. Tubach F, Ravaud P, Baron G, Falissard B, Logeart I, Bellamy N, Bombardier C, Felson D, Hochberg M, van der Heijde D, et al. Evaluation of clinically relevant changes in patient reported outcomes in knee and hip osteoarthritis: the minimal clinically important improvement. Ann Rheum Dis. 2005;64(1):29–33. doi: 10.1136/ard.2004.022905.
    1. Paulsen A, Roos EM, Pedersen AB, Overgaard S. Minimal clinically important improvement (MCII) and patient-acceptable symptom state (PASS) in total hip arthroplasty (THA) patients 1 year postoperatively. Acta Orthop. 2014;85(1):39–48. doi: 10.3109/17453674.2013.867782.
    1. Farrar JT, Young JP, Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94(2):149–58. doi: 10.1016/S0304-3959(01)00349-9.
    1. Singh JA, Yang S, Strand V, Simon L, Forsythe A, Hamburger S, Chen L. Validation of pain and patient global scales in chronic gout: data from two randomised controlled trials. Ann Rheum Dis. 2011;70(7):1277–81. doi: 10.1136/ard.2010.144022.
    1. Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, Katz LM, Lightfoot R, Jr, Paulus H, Strand V, et al. American College of Rheumatology. Preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum. 1995;38(6):727–35. doi: 10.1002/art.1780380602.
    1. Rothwell AG, Hooper GJ, Hobbs A, Frampton CM. An analysis of the Oxford hip and knee scores and their relationship to early joint revision in the New Zealand Joint Registry. J Bone Joint Surg Br. 2010;92(3):413–8. doi: 10.1302/0301-620X.92B3.22913.
    1. Frihagen F, Grotle M, Madsen JE, Wyller TB, Mowinckel P, Nordsletten L. Outcome after femoral neck fractures: a comparison of Harris Hip Score, Eq-5d and Barthel Index. Injury. 2008;39(10):1147–56. doi: 10.1016/j.injury.2008.03.027.
    1. Huddleston JI, Wang Y, Uquillas C, Herndon JH, Maloney WJ. Age and obesity are risk factors for adverse events after total hip arthroplasty. Clin Orthop Relat Res. 2012;470(2):490–6. doi: 10.1007/s11999-011-1967-y.
    1. Jimenez-Garcia R, Villanueva-Martinez M, Fernandez-de-Las-Penas C, Hernandez-Barrera V, Rios-Luna A, Garrido PC, de Andres AL, Jimenez-Trujillo I, Montero JS, Gil-de-Miguel A. Trends in primary total hip arthroplasty in Spain from 2001 to 2008: evaluating changes in demographics, comorbidity, incidence rates, length of stay, costs and mortality. BMC Musculoskelet Disord. 2011;12:43. doi: 10.1186/1471-2474-12-43.
    1. Kirksey M, Chiu YL, Ma Y, Della Valle AG, Poultsides L, Gerner P, Memtsoudis SG. Trends in in-hospital major morbidity and mortality after total joint arthroplasty: United States 1998–2008. Anesth Analg. 2012;115(2):321–7. doi: 10.1213/ANE.0b013e31825b6824.
    1. Wamper KE, Sierevelt IN, Poolman RW, Bhandari M, Haverkamp D. The Harris hip score: Do ceiling effects limit its usefulness in orthopedics? Acta Orthop. 2010;81(6):703–7. doi: 10.3109/17453674.2010.537808.

Source: PubMed

3
Subskrybuj