The effect of a one-year vigorous physical activity intervention on fitness, cognitive performance and mental health in young adolescents: the Fit to Study cluster randomised controlled trial

T M Wassenaar, C M Wheatley, N Beale, T Nichols, P Salvan, A Meaney, K Atherton, K Diaz-Ordaz, H Dawes, H Johansen-Berg, T M Wassenaar, C M Wheatley, N Beale, T Nichols, P Salvan, A Meaney, K Atherton, K Diaz-Ordaz, H Dawes, H Johansen-Berg

Abstract

Background: Physical activity (PA) may positively stimulate the brain, cognition and mental health during adolescence, a period of dynamic neurobiological development. High-intensity interval training (HIIT) or vigorous PA interventions are time-efficient, scalable and can be easily implemented in existing school curricula, yet their effects on cognitive, academic and mental health outcomes are unclear. The primary aim of the Fit to Study trial was to investigate whether a pragmatic and scalable HIIT-style VPA intervention delivered during school physical education (PE) could improve attainment in maths. The primary outcome has previously been reported and was null. Here, we report the effect of the intervention on prespecified secondary outcomes, including cardiorespiratory fitness, cognitive performance, and mental health in young adolescents.

Methods: The Fit to Study cluster randomised controlled trial included Year 8 pupils (n = 18,261, aged 12-13) from 104 secondary state schools in South/Mid-England. Schools were randomised into an intervention condition (n = 52), in which PE teachers delivered an additional 10 min of VPA per PE lesson for one academic year (2017-2018), or into a "PE as usual" control condition. Secondary outcomes included assessments of cardiorespiratory fitness (20-m shuttle run), cognitive performance (executive functions, relational memory and processing speed) and mental health (Strength and Difficulties Questionnaire and self-esteem measures). The primary intention-to-treat (ITT) analysis used linear models and structural equation models with cluster-robust standard errors to test for intervention effects. A complier-average causal effect (CACE) was estimated using a two-stage least squares procedure.

Results: The HIIT-style VPA intervention did not significantly improve cardiorespiratory fitness, cognitive performance (executive functions, relational memory or processed speed), or mental health (all p > 0.05). Subgroup analyses showed no significant moderation of intervention effects by sex, socioeconomic status or baseline fitness levels. Changes in cardiorespiratory fitness were not significantly related to changes in cognitive or mental health outcomes. The trial was marked by high drop-out and low intervention compliance. Findings from the CACE analysis were in line with those from the ITT analysis.

Conclusion: The one-academic year HIIT-style VPA intervention delivered during regular school PE did not significantly improve fitness, cognitive performance or mental health, but these findings should be interpreted with caution given low implementation fidelity and high drop-out. Well-controlled, large-scale, school-based trials that examine the effectiveness of HIIT-style interventions to enhance cognitive and mental health outcomes are warranted.

Trial registration: ISRCTN registry, 15,730,512 . Trial protocol and analysis plan for primary outcome prospectively registered on 30th March 2017. ClinicalTrials.gov , NCT03286725 . Secondary measures (focus of current manuscript) retrospectively registered on 18 September 2017.

Keywords: Adolescence; Cardiorespiratory fitness; Cluster randomised controlled trial; Cognition; Intervention; Mental health; Physical activity.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram of schools and participants
Fig. 2
Fig. 2
Path diagram showing the effects of the VPA intervention on an Executive Function (EF) latent variable. All coefficients are standardized except for the path coefficient for Group which is y-standardized (equivalent to Cohen’s d). The 95% robust (Huber-White) confidence interval (CI) is shown for the Group coefficient. The stratification variable (school gender-type, dummy coded) was included as a set of additional covariates but they are not shown in the model. The following correlations between residuals were included in the model (t0 = pretest, t1 = posttest): Flankerincon, t0 with Flankerincon,t1 (0.34), Flankercon,t0 with Flankercon, t1 (0.29), Switchnsw, t0 with Switchnsw, t1 (0.09), Flankercon, t0 with Flankerincon, t0 (0.39) Switchnsw, t0 with Switchsw, t0 (0.074), Flankerincon, t1 with Flankercon, t1 (0.41), 2-backt1 with 2-backt0 (0.38), but are not shown in the diagram. Abbreviations: EF = executive function, incon = incongruent, con = congruent, nsw = non-switch, sw = switch

References

    1. Dahl RE, Allen NB, Wilbrecht L, Suleiman AB. Importance of investing in adolescence from a developmental science perspective. Nature. 2018;554(7693):441–450. doi: 10.1038/nature25770.
    1. Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev. 2018;94:179–195. doi: 10.1016/j.neubiorev.2018.09.005.
    1. Sawyer SM, Azzopardi PS, Wickremarathne D, Patton GC. The age of adolescence. Lancet child Adolesc Heal. 2018;2(18):223–228. doi: 10.1016/S2352-4642(18)30022-1.
    1. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9(12):947–957. doi: 10.1038/nrn2513.
    1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of. Arch Gen Psychiatry. 2005;62(6):593–602. doi: 10.1001/archpsyc.62.6.593.
    1. Fuhrmann D, Knoll LJ, Blakemore SJ. Adolescence as a sensitive period of brain development. Trends Cogn Sci. 2015;19(10):558–566. doi: 10.1016/j.tics.2015.07.008.
    1. Patton GC, Sawyer SM, Santelli JS, Ross DA, Afifi R, Allen NB, Arora M, Azzopardi P, Baldwin W, Bonell C, Kakuma R, Kennedy E, Mahon J, McGovern T, Mokdad AH, Patel V, Petroni S, Reavley N, Taiwo K, Waldfogel J, Wickremarathne D, Barroso C, Bhutta Z, Fatusi AO, Mattoo A, Diers J, Fang J, Ferguson J, Ssewamala F, Viner RM, et al. Our future: a lancet commission on adolescent health and wellbeing. Lancet. 2016;387(10036):2423–2478. doi: 10.1016/S0140-6736(16)00579-1.
    1. 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report [Internet]. Washington, DC; 2018.
    1. Voss MW, Vivar C, Kramer AF, Van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci. 2013;17(10):525–544. doi: 10.1016/j.tics.2013.08.001.
    1. Biddle SJH, Ciaccioni S, Thomas G, Vergeer I. Physical activity and mental health in children and adolescents: an updated review of reviews and an analysis of causality. Psychol Sport Exerc. 2019;42:146–155. doi: 10.1016/j.psychsport.2018.08.011.
    1. Gunnell KE, Poitras VJ, LeBlanc A, Schibli K, Barbeau K, Hedayati N, et al. Physical activity and brain structure, brain function, and cognition in children and youth: a systematic review of randomized controlled trials. Ment Health Phys Act. 2018;16:105–127. doi: 10.1016/j.mhpa.2018.11.002.
    1. Singh AS, Saliasi E, Van Den Berg V, Uijtdewilligen L, De Groot RHM, Jolles J, et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: a novel combination of a systematic review and recommendations from an expert panel. Br J Sports Med. 2019;53(10):640–647. doi: 10.1136/bjsports-2017-098136.
    1. Álvarez-Bueno C, Pesce C, Cavero-Redondo I, Sánchez-López M, Martínez-Hortelano JA, Martínez-Vizcaíno V. The effect of physical activity interventions on children’s cognition and metacognition: a systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;56(9):729–38. 10.1016/j.jaac.2017.06.012.
    1. Álvarez-Bueno C, Pesce C, Cavero-Redondo III, Sánchez-López M, Garrido-Miguel M, Martínez-Vizcaíno V. Academic achievement and physical activity: a meta-analysis. Pediatrics. 2017;140(6):e20171498. doi: 10.1542/peds.2017-1498.
    1. Ekeland E, Heian F, Hagen KB. Can exercise improve self esteem in children and young people? A systematic review of randomised controlled trials. Br J Sports Med. 2005;39(11):792–798. doi: 10.1136/bjsm.2004.017707.
    1. Twisk JWR, Kemper H, Van Mechelen W. Tracking of activity and fitness and the relationship with cardiovascular disease risk factors. Med Sci Sport Exerc. 2000;32(8):1455–1461. doi: 10.1097/00005768-200008000-00014.
    1. McKercher C, Sanderson K, Schmidt MD, Otahal P, Patton GC, Dwyer T, Venn AJ, et al. Physical activity patterns and risk of depression in young adulthood: a 20-year cohort study since childhood. Soc Psychiatry Psychiatr Epidemiol. 2014;49(11):1823–1834. doi: 10.1007/s00127-014-0863-7.
    1. Perez EC, Bravo DR, Rodgers SP, Khan AR, Leasure JL. Shaping the adult brain with exercise during development: emerging evidence and knowledge gaps. Int J Dev Neurosci. 2019;78(1):147–155. doi: 10.1016/j.ijdevneu.2019.06.006.
    1. Middleton LE, Barnes DE, Lui LY, Yaffe K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc. 2010;58(7):1322–1326. doi: 10.1111/j.1532-5415.2010.02903.x.
    1. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–257. doi: 10.1016/S0140-6736(12)60646-1.
    1. Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc Heal. 2020;9(4):335–338.
    1. Dumith SC, Gigante DP, Domingues MR, Kohl HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40(3):685–698. doi: 10.1093/ije/dyq272.
    1. Booth M, Okely A. Promoting physical activity among children and adolescents: the strengths and limitations of school-based approaches. Heal Promot J Aust. 2005;16(1):52–54. doi: 10.1071/HE05052.
    1. Love R, Adams J, van Sluijs EMF. Are school-based physical activity interventions effective and equitable? A meta-analysis of cluster randomized controlled trials with accelerometer-assessed activity. Obes Rev. 2019;20(6):859–870. doi: 10.1111/obr.12823.
    1. Jones M, Defever E, Letsinger A, Steele J, Mackintosh KA. A mixed-studies systematic review and meta-analysis of school-based interventions to promote physical activity and/or reduce sedentary time in children. J Sport Heal Sci. 2019;9(1):3–17. doi: 10.1016/j.jshs.2019.06.009.
    1. Lonsdale C, Rosenkranz RR, Peralta LR, Bennie A, Fahey P, Lubans DR. A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons. Prev Med. 2013;56(2):152–61. 10.1016/j.ypmed.2012.12.004.
    1. Kriemler S, Meyer U, Martin E, Van Sluijs EMF, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45(11):923–930. doi: 10.1136/bjsports-2011-090186.
    1. Dobbins M, De Corby K, Robeson P, Husson H, Tirilis D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6-18. Cochrane Database Syst Rev. 2009;18(1):CD007651.
    1. Dobbins M, Husson H, Decorby K, Rl L. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18 (review) Cochrane Database Syst Rev. 2013;18(2):CD007651.
    1. Pozuelo-Carrascosa DP, García-Hermoso A, Álvarez-Bueno C, Sánchez-López M, Martinez-Vizcaino V. Effectiveness of school-based physical activity programmes on cardiorespiratory fitness in children: a meta-analysis of randomised controlled trials. Br J Sports Med. 2018;52(19):1234–1240. doi: 10.1136/bjsports-2017-097600.
    1. Liu M, Wu L, Ming Q. How does physical activity intervention improve self-esteem and self-concept in children and adolescents? Evidence from a meta-analysis. PLoS One. 2015;10(8):e0134804. doi: 10.1371/journal.pone.0134804.
    1. Naylor P-JJ, Nettlefold L, Race D, Hoy C, Ashe MC, Wharf Higgins J, et al. Implementation of school based physical activity interventions: A systematic review. Prev Med. 2015;72:95–115.
    1. Hills AP, Dengel DR, Lubans DR. Supporting public health priorities: recommendations for physical education and physical activity promotion in schools. Prog Cardiovasc Dis. 2015;57(4):368–374. doi: 10.1016/j.pcad.2014.09.010.
    1. Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):1253–1261. doi: 10.1136/bjsports-2014-094490.
    1. Logan GRMM, Harris N, Duncan S, Schofield G. A review of adolescent high-intensity interval training. Sport Med. 2014;44(8):1071–1085. doi: 10.1007/s40279-014-0187-5.
    1. Eddolls WTB, McNarry MA, Stratton G, Winn CON, Mackintosh KA. High-intensity interval training interventions in children and adolescents: a systematic review. Sport Med. 2017;47(11):2363–2374. doi: 10.1007/s40279-017-0753-8.
    1. Lubans DR, Smith JJ, Eather N, Leahy AA, Morgan PJ, Lonsdale C, et al. Time-efficient intervention to improve older adolescents’ cardiorespiratory fitness: findings from the “burn 2 learn” cluster randomised controlled trial. Br J Sports Med. 2020:1–9.
    1. Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Pollock E, Kennedy SG, Lubans DR, et al. Preliminary efficacy and feasibility of embedding high intensity interval training into the school day: a pilot randomized controlled trial. Prev Med Rep. 2015;2:973–979. doi: 10.1016/j.pmedr.2015.11.001.
    1. Biddle SJH, Batterham AM. High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act. 2015;12(1):1–8. doi: 10.1186/s12966-015-0254-9.
    1. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sport Med. 2013;43(5):313–338. doi: 10.1007/s40279-013-0029-x.
    1. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part II: anaerobic energy, neuromuscular load and practical applications. Sport Med. 2013;43(10):927–954. doi: 10.1007/s40279-013-0066-5.
    1. Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(3):901–911. doi: 10.1113/jphysiol.2006.112094.
    1. Benda NMM, Seeger JPH, Stevens GGCF, Hijmans-Kersten BTP, Van Dijk APJ, Bellersen L, et al. Effects of high-intensity interval training versus continuous training on physical fitness, cardiovascular function and quality of life in heart failure patients. PLoS One. 2015;10(10):e0141256. doi: 10.1371/journal.pone.0141256.
    1. Moreau D, Kirk IJ, Waldie KE. High-intensity training enhances executive function in children in a randomized , placebo-controlled trial. Elife. 2017;6:e25062, High-intensity training enhances executive function in children in a randomized, placebo-controlled trial, DOI: 10.7554/eLife.25062.
    1. Costigan SA, Eather N, Plotnikoff RC, Hillman CH, Lubans DR. High-intensity interval training for cognitive and mental health in adolescents. Med Sci Sports Exerc. 2016;48(10):1985–1993. doi: 10.1249/MSS.0000000000000993.
    1. Jeon YK, Ha CH. The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environ Health Prev Med. 2017;22(1):1–6. doi: 10.1186/s12199-017-0643-6.
    1. Leahy AA, Michels MFI, Eather N, Hillman CH, Shigeta TT, Lubans DR, Smith JJ, et al. Feasibility of test administration and preliminary findings for cognitive control in the burn 2 learn pilot randomised controlled trial. J Sports Sci. 2020;38(15):1708–1716. doi: 10.1080/02640414.2020.1756673.
    1. Venckunas T, Snieckus A, Trinkunas E, Baranauskiene N, Solianik R, Juodsnukis A, Streckis V, Kamandulis S, et al. Interval running training improves cognitive flexibility and aerobic power of young healthy adults. J Strength Cond Res. 2016;30(8):2114–2121. doi: 10.1519/JSC.0000000000001322.
    1. Leahy AA, Mavilidi MF, Smith JJ, Hillman CH, Eather N, Barker D, et al. Review of High-Intensity Interval Training for Cognitive and Mental Health in Youth. Med Sci Sport Exerc. 2020;52:10.
    1. Leahy AA, Eather N, Smith JJ, Hillman CH, Morgan PJ, Plotnikoff RC, Nilsson M, Costigan SA, Noetel M, Lubans DR, et al. Feasibility and preliminary efficacy of a teacher-facilitated high-intensity interval training intervention for older adolescents. Pediatr Exerc Sci. 2019;31(1):107–117. doi: 10.1123/pes.2018-0039.
    1. Kennedy SG, Leahy AA, Smith JJ, Eather N, Hillman CH, Morgan PJ, Plotnikoff RC, Boyer J, Lubans DR, et al. Process evaluation of a school-based high-intensity interval training program for older adolescents: the burn 2 learn cluster randomised controlled trial. Children. 2020;7(12):299. doi: 10.3390/children7120299.
    1. Wassenaar TM, Wheatley CM, Beale N, Salvan P, Meaney A, Possee JB, Atherton KE, Duda JL, Dawes H, Johansen-Berg H, et al. Effects of a programme of vigorous physical activity during secondary school physical education on academic performance, fitness, cognition, mental health and the brain of adolescents (fit to study): study protocol for a cluster-randomised trial. Trials. 2019;20(1):189. doi: 10.1186/s13063-019-3279-6.
    1. Husain F, Bartasevicius V, Marshall L, Chidley S, Forsyth E. Fit to study. Eval Rep. 2019. .
    1. Scott JJ, Morgan PJ, Plotnikoff RC, Lubans DR. Reliability and validity of a single-item physical activity measure for adolescents. J Paediatr Child Health. 2015;51(8):787–793. doi: 10.1111/jpc.12836.
    1. Hagger MS, Chatzisarantis N, Biddle SJH, Orbell S. Antecedents of children’s physical activity intentions and behaviour: predictive validity and longitudinal effects. Psychol Health. 2001;16(4):391–407. doi: 10.1080/08870440108405515.
    1. Husain F. Fit to Study. Evaluation protocol [Internet]. 2017. .
    1. Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502. 10.1016/j.jsams.2009.09.008.
    1. Martland R, Mondelli V, Gaughran F, Stubbs B. Can high-intensity interval training improve physical and mental health outcomes? A meta-review of 33 systematic reviews across the lifespan. J Sports Sci. 2020;38(4):430–469. doi: 10.1080/02640414.2019.1706829.
    1. Wheatley C, Beale N, Wassenaar T, Graham M, Eldridge E, Dawes H, Johansen-Berg H, et al. Fit to study: reflections on designing and implementing a large-scale randomized controlled trial in secondary schools. Trends Neurosci Educ. 2020;20:100134. doi: 10.1016/j.tine.2020.100134.
    1. Léger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101. doi: 10.1080/02640418808729800.
    1. Cooper KH. A means of assessing maximal oxygen intake. JAMA. 1968;203(3):201–204. doi: 10.1001/jama.1968.03140030033008.
    1. Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135–168. doi: 10.1146/annurev-psych-113011-143750.
    1. De Leeuw JR. jsPsych: a JavaScript library for creating behavioral experiments in a web browser. Behav Res Methods. 2015;47(1):1–12. doi: 10.3758/s13428-014-0458-y.
    1. Chaddock L, Erickson KI, Prakash RS, Kim JS, Voss MW, Vanpatter M, et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010;1358:172–183. doi: 10.1016/j.brainres.2010.08.049.
    1. Hillman CH, Pontifex MB, Castelli DM, Khan NA, Raine LB, Scudder MR, Drollette ES, Moore RD, Wu CT, Kamijo K, et al. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics. 2014;134(4):e1063–e1071. doi: 10.1542/peds.2013-3219.
    1. Chen A-G, Yan J, Yin H-C, Pan C-Y, Chang Y-K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol Sport Exerc. 2014;15(6):627–636. doi: 10.1016/j.psychsport.2014.06.004.
    1. Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev. 2013;20(1):73–86. doi: 10.3758/s13423-012-0345-4.
    1. Goodman R. The strengths and difficulties questionnaire: a research note. J Child Psychol Psychiatry. 1997;38(5):581–586. doi: 10.1111/j.1469-7610.1997.tb01545.x.
    1. Goodman A, Lamping DL, Ploubidis GB. When to use broader internalising and externalising subscales instead of the hypothesised five subscales on the strengths and difficulties questionnaire (SDQ): data from british parents, teachers and children. J Abnorm Child Psychol. 2010;38(8):1179–1191. doi: 10.1007/s10802-010-9434-x.
    1. Marsh HW, Martin AJ, Jackson S. Introducing a short version of the physical self description questionnaire: new strategies, short-form evaluative criteria, and applications of factor analyses. J Sport Exerc Psychol. 2010;32(4):438–482. doi: 10.1123/jsep.32.4.438.
    1. Kahan BC, Morris TP. Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. BMJ. 2012;345(7879):1–8.
    1. Pustejovsky JE, Tipton E. Small-sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models. J Bus Econ Stat. 2018;36(4):672–683. doi: 10.1080/07350015.2016.1247004.
    1. Tomkinson GR, Lang JJ, Tremblay MS, Dale M, Leblanc AG, Belanger K, et al. International normative 20 m shuttle run values from 1142026 children and youth representing 50 countries. Br J Sports Med. 2017;51(21):1545–1554. doi: 10.1136/bjsports-2016-095987.
    1. Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials. 2012;9(1):48–55. doi: 10.1177/1740774511420743.
    1. White IR, Thomas J. Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. Clin Trials. 2005;2(2):141–151. doi: 10.1191/1740774505cn081oa.
    1. Owens S, Galloway R, Gutin B. The case for vigorous physical activity in youth. Am J Lifestyle Med. 2017;11(2):96–115. doi: 10.1177/1559827615594585.
    1. Davis CL, Tomporowski PD, McDowell JE, Austin BP, Miller PH, Allison JD, et al. Exercises improves executive function and achievement and alters brain activation in overweight children a randomized controlled trial. Health Psychol. 2011;30(1):91–98. doi: 10.1037/a0021766.
    1. Ludyga S, Gerber M, Pühse U, Looser VN, Kamijo K. Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nat Hum Behav. 2020;4(6):603–612. doi: 10.1038/s41562-020-0851-8.
    1. Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85. doi: 10.1016/j.yfrne.2017.04.002.
    1. Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sport Med. 2014;44(7):1005–1017. doi: 10.1007/s40279-014-0180-z.
    1. North CT, McCullagh P, Tran ZV. Effect of exercise on depression. Exerc Sport Sci Rev. 1990;18(1):379–416. doi: 10.1249/00003677-199001000-00016.
    1. Aberg MAI, Pedersen NL, Torén K, Svartengren M, Bäckstrand B, Johnsson T, et al. Cardiovascular fitness is associated with cognition in young adulthood. Proc Natl Acad Sci. 2009;106(49):20906–20911. doi: 10.1073/pnas.0905307106.
    1. Tuvey S, Steele J, Horton E, Mayo X, Liguori G, Mann S, et al. Do changes in cardiorespiratory fitness resulting from physical activity interventions impact academic performance and executive function in children and adolescents? A systematic review, meta-analysis, and meta-regression. OSF. 2019;10.31236/.
    1. Alderson P. Absence of evidence is not evidence of absence. BMJ. 2004;328:477–479. doi: 10.1136/bmj.328.7438.477.
    1. Tarp J, Domazet SL, Froberg K, Hillman CH, Andersen LB, Bugge A. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion — Learning, Cognition and Motion – A Cluster Randomized Controlled Trial. PLoS One. 2016;11(6):1–19.
    1. Perri MG, Anton SD, Durning PE, Ketterson TU, Sydeman SJ, Berlant NE, Kanasky WF, Newton RL, Limacher MC, Martin AD, et al. Adherence to exercise prescriptions: effects of prescribing moderate versus higher levels of intensity and frequency. Health Psychol. 2002;21(5):452–458. doi: 10.1037/0278-6133.21.5.452.
    1. Lambert JD, Greaves CJ, Farrand P, Cross R, Haase AM, Taylor AH. Assessment of fidelity in individual level behaviour change interventions promoting physical activity among adults: a systematic review. BMC Public Health. 2017;17(1):765. doi: 10.1186/s12889-017-4778-6.
    1. Calverley TA, Ogoh S, Marley CJ, Steggall M, Marchi N, Brassard P, Lucas SJE, Cotter JD, Roig M, Ainslie PN, Wisløff U, Bailey DM, et al. HIITing the brain with exercise; mechanisms, consequences and practical recommendations. J Physiol. 2020;598(13):2513–2530. doi: 10.1113/JP275021.
    1. Van Sluijs EMF, Kriemler S. Reflections on physical activity intervention research in young people - dos, don’ts, and critical thoughts. Int J Behav Nutr Phys Act. 2016;13(1):25. doi: 10.1186/s12966-016-0348-z.
    1. Breitenstein SM, Gross D, Garvey CA, Hill C, Fogg L, Resnick B. Implementation fidelity in community-based interventions. Res Nurs Health. 2010;33(2):164–173. doi: 10.1002/nur.20373.
    1. Lee I-MM, Shiroma EJ. Using accelerometers to measure physical activity in large- scale epidemiologic studies: issues and challenges. Br J Sports Med. 2014;48(3):197–201. doi: 10.1136/bjsports-2013-093154.
    1. Smith JJ, Morgan PJ, Plotnikoff RC, Dally KA, Salmon J, Okely AD, Finn TL, Lubans DR, et al. Smart-phone obesity prevention trial for adolescent boys in low-income communities: the ATLAS RCT. Pediatrics. 2014;134(3):e723–e731. doi: 10.1542/peds.2014-1012.
    1. Savage N. Made to measure. Nature. 2015;527(7576):S12–S13. doi: 10.1038/527S12a.
    1. Pössel P, Smith E, Alexander O. LARS&LISA: a universal school-based cognitive-behavioral program to prevent adolescent depression. Psicol Reflex Crit. 2018;31(1):23. doi: 10.1186/s41155-018-0104-1.
    1. Yildirim M, Van Stralen MM, Chinapaw MJM, Brug J, Van Mechelen W, Twisk JWR, et al. For whom and under what circumstances do school-based energy balance behavior interventions work? Systematic review on moderators. Int J Pediatr Obes. 2011;6(2–2):46–57. doi: 10.3109/17477166.2011.566440.
    1. Wheatley C, Wassenaar T, Salvan P, Beale N, Nichols T, Dawes H, Johansen-Berg H, et al. Associations between fitness, physical activity and mental health in a community sample of young British adolescents: baseline data from the Fit to Study trial. BMJ Open Sport Exerc Med. 2020;6:e000819.
    1. Sport England. Active lives children and young people survey attitudes towards sport and physical activity (academic year 2017/18) [internet]. Sport England 2018.
    1. Mars T, Ellard D, Carnes D, Homer K, Underwood M, Taylor SJC. Fidelity in complex behaviour change interventions: A standardised approach to evaluate intervention integrity. BMJ Open. 2013;3:11. doi: 10.1136/bmjopen-2013-003555.
    1. Taylor KL, Weston M, Batterham AM. Evaluating intervention fidelity: an example from a high-intensity interval training study. PLoS One. 2015;10(4):e0125166. doi: 10.1371/journal.pone.0125166.

Source: PubMed

3
Subskrybuj