Tracking disease progression in familial and sporadic frontotemporal lobar degeneration: Recent findings from ARTFL and LEFFTDS

Howard J Rosen, Bradley F Boeve, Adam L Boxer, Howard J Rosen, Bradley F Boeve, Adam L Boxer

Abstract

Introduction: Familial frontotemporal lobar degeneration (f-FTLD) due to autosomal dominant mutations is an important entity for developing treatments for FTLD. The Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) longitudinal studies were designed to describe the natural history of f-FTLD.

Methods: We summarized recent publications from the ARTFL and LEFFTDS studies, along with other recent publications describing the natural history of f-FTLD.

Results: Published and emerging studies are producing data on all phases of f-FTLD, including the asymptomatic and symptomatic phases of disease, as well as the transitional phase when symptoms are just beginning to develop. These data indicate that rates of change increase along with disease severity, which is consistent with commonly cited models of neurodegeneration, and that measurement of biomarkers may predict onset of symptoms.

Discussion: Data from large multisite studies are producing important data on the natural history of f-FTLD that will be critical for planning intervention trials.

Keywords: C9orf72; GRN; MAPT; familial; frontotemporal lobar degeneration; genetic.

© 2020 The Authors. Alzheimer's & Dementia published by Wiley Periodicals, Inc. on behalf of Alzheimer's Association.

Figures

Figure 1
Figure 1
Clinical and neuropathological classification of FTLD. TDP, TAR DNA binding protein 43; FUS, fused in sarcoma; 3R, 3 repeat; 4R, 4 repeat; CBD, corticobasal degeneration; FTDP‐17, frontotemporal dementia Parkinsonism linked to chromosome 17; CTE, chronic traumatic encephalopathy; AGD, argyrophilic grain disease; MST, multisystem tauopathy; see text for additional abbreviations; italicized words are abbreviations for autosomal dominant genes that cause FTLD. (After Seeley et al.)
Figure 2
Figure 2
Theoretical model of disease progression in frontotemporal dementia (FTLD), linking theoretical biomarker changes to clinical stages of illness

References

    1. Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386:1672‐1682.
    1. Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8:423‐434.
    1. Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology. 2002;58:1615‐1621.
    1. Rosso SM, Donker Kaat L, Baks T, et al. Frontotemporal dementia in the Netherlands: patient characteristics and prevalence estimates from a population‐based study. Brain. 2003;126:2016‐2022.
    1. Knopman DS, Petersen RC, Edland SD, Cha RH, Rocca WA. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology. 2004;62:506‐508.
    1. Onyike CU, Diehl‐Schmid J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry. 2013;25:130‐137.
    1. Coyle‐Gilchrist IT, Dick KM, Patterson K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology. 2016;86:1736‐1743.
    1. Roberson ED, Hesse JH, Rose KD, et al. Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology. 2005;65:719‐725.
    1. Papageorgiou SG, Kontaxis T, Bonakis A, Kalfakis N, Vassilopoulos D. Frequency and causes of early‐onset dementia in a tertiary referral center in Athens. Alzheimer Dis Assoc Disord. 2009;23:347‐351.
    1. Mourik JC, Rosso SM, Niermeijer MF, Duivenvoorden HJ, Van Swieten JC, Tibben A. Frontotemporal dementia: behavioral symptoms and caregiver distress. Dement Geriatr Cogn Disord. 2004;18:299‐306.
    1. Merrilees J, Klapper J, Murphy J, Lomen‐Hoerth C, Miller BL. Cognitive and behavioral challenges in caring for patients with frontotemporal dementia and amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11:298‐302.
    1. Galvin JE, Howard DH, Denny SS, Dickinson S, Tatton N. The social and economic burden of frontotemporal degeneration. Neurology. 2017;89:2049‐2056.
    1. Boxer AL, Knopman DS, Kaufer DI, et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double‐blind, placebo‐controlled trial. Lancet Neurol. 2013;12:149‐156.
    1. Boxer AL, Gold M, Huey E, et al. Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement. 2013;9:176‐188.
    1. Tsai RM, Boxer AL. Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem. 2016;138(Suppl 1):211‐221.
    1. Riboldi G, Zanetta C, Ranieri M, et al. Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases. Mol Neurobiol. 2014;50:721‐732.
    1. Sha SJ, Miller ZA, Min SW, et al. An 8‐week, open‐label, dose‐finding study of nimodipine for the treatment of progranulin insufficiency from GRN gene mutations. Alzheimers Dement (N Y). 2017;3:507‐512.
    1. Finger EC, MacKinley J, Blair M, et al. Oxytocin for frontotemporal dementia: a randomized dose‐finding study of safety and tolerability. Neurology. 2015;84:174‐781.
    1. Chitramuthu BP, Bennett HPJ, Bateman A. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain. 2017;140:3081‐3104.
    1. West T, Hu Y, Verghese PB, et al. Preclinical and clinical development of ABBV‐8E12, a humanized anti‐tau antibody, for treatment of alzheimer's disease and other tauopathies. J Prev Alzheimers Dis. 2017;4:236‐241.
    1. Crunkhorn S. Alzheimer disease: antisense oligonucleotide reverses tau pathology. Nat Rev Drug Discov. 2017;16:166.
    1. Yanamandra K, Patel TK, Jiang H, et al. Anti‐tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med. 2017;9:pii: eaal2029.
    1. Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5'‐splice‐site mutations in tau with the inherited dementia FTDP‐17. Nature. 1998;393:702‐705.
    1. Baker M, Mackenzie IR, Pickering‐Brown SM, et al. Mutations in progranulin cause tau‐negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916‐919.
    1. DeJesus‐Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron. 2011;72:245‐256.
    1. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron. 2011;72:257‐268.
    1. van Swieten JC, Rosso SM. Epidemiological aspects of frontotemporal dementia. Handb Clin Neurol. 2008;89:331‐341.
    1. Rohrer JD, Guerreiro R, Vandrovcova J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73:1451‐1456.
    1. Petersen RC. How early can we diagnose Alzheimer disease (and is it sufficient)? The 2017 Wartenberg lecture. Neurology. 2018;91:395‐402.
    1. Cohen AD, Landau SM, Snitz BE, Klunk WE, Blennow K, Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer's disease. Mol Cell Neurosci. 2019;97:3‐17.
    1. Petersen RC, Thomas RG, Aisen PS, et al. Randomized controlled trials in mild cognitive impairment: sources of variability. Neurology. 2017;88:1751‐1758.
    1. Jack CR, Jr. , Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207‐216.
    1. Mills SM, Mallmann J, Santacruz AM, et al. Preclinical trials in autosomal dominant AD: implementation of the DIAN‐TU trial. Rev Neurol (Paris). 2013;169:737‐743.
    1. Sperling RA, Rentz DM, Johnson KA, et al. The A4 study: stopping AD before symptoms begin? Sci Transl Med. 2014;6:228fs13.
    1. Ismail Z, Aguera‐Ortiz L, Brodaty H, et al. The mild behavioral impairment checklist (MBI‐C): a rating scale for neuropsychiatric symptoms in pre‐dementia populations. J Alzheimers Dis. 2017;56:929‐938.
    1. Montine TJ, Koroshetz WJ, Babcock D, et al. Recommendations of the Alzheimer's disease‐related dementias conference. Neurology. 2014;83:851‐860.
    1. Corriveau RA, Koroshetz WJ, Gladman JT, et al. Alzheimer's Disease‐Related Dementias Summit 2016: national research priorities. Neurology. 2017;89:2381‐2391.
    1. Rohrer JD, Nicholas JM, Cash DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal Dementia Initiative (GENFI) study: a cross‐sectional analysis. Lancet Neurol. 2015;14:253‐262.
    1. Rascovsky K, Salmon DP, Lipton AM, et al. Rate of progression differs in frontotemporal dementia and Alzheimer disease. Neurology. 2005;65:397‐403.
    1. Krueger CE, Dean DL, Rosen HJ, et al. Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer's disease. Alzheimer Dis Assoc Disord. 2010;24:43‐48.
    1. Diehl‐Schmid J, Grimmer T, Drzezga A, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F‐FDG‐PET‐study. Neurobiol Aging. 2006.
    1. Knopman DS, Kramer JH, Boeve BF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain. 2008;131:2957‐2968.
    1. Knopman DS, Jack CR, Jr. , Kramer JH, et al. Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year. Neurology. 2009;72:1843‐1849.
    1. Whitwell JL, Jack CR, Jr. , Pankratz VS, et al. Rates of brain atrophy over time in autopsy‐proven frontotemporal dementia and Alzheimer disease. Neuroimage. 2008;39:1034‐1040.
    1. Gordon E, Rohrer JD, Kim LG, et al. Measuring disease progression in frontotemporal lobar degeneration: a clinical and MRI study. Neurology. 2010;74:666‐673.
    1. Mahoney CJ, Simpson IJ, Nicholas JM, et al. Longitudinal diffusion tensor imaging in frontotemporal dementia. Ann Neurol. 2015;77:33‐46.
    1. Staffaroni AM, Ljubenkov PA, Kornak J, et al. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials. Brain. 2019;142:443‐459.
    1. Binney RJ, Pankov A, Marx G, et al. Data‐driven regions of interest for longitudinal change in three variants of frontotemporal lobar degeneration. Brain Behav. 2017;7:e00675.
    1. Whitwell JL, Weigand SD, Gunter JL, et al. Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN. Neurology. 2011;77:393‐398.
    1. Mahoney CJ, Downey LE, Ridgway GR, et al. Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions. Alzheimers Res Ther. 2012;4:41.
    1. Whitwell JL, Boeve BF, Weigand SD, et al. Brain atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial magnetic resonance images. Eur J Neurol. 2015;22:745‐752.
    1. Floeter MK, Bageac D, Danielian LE, Braun LE, Traynor BJ, Kwan JY. Longitudinal imaging in C9orf72 mutation carriers: relationship to phenotype. Neuroimage Clin. 2016;12:1035‐1043.
    1. Floeter MK, Danielian LE, Braun LE, Wu T. Longitudinal diffusion imaging across the C9orf72 clinical spectrum. J Neurol Neurosurg Psychiatry. 2018;89:53‐60.
    1. Scherling CS, Hall T, Berisha F, et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol. 2014;75:116‐126.
    1. Zhao Y, Xin Y, Meng S, He Z, Hu W. Neurofilament light chain protein in neurodegenerative dementia: a systematic review and network meta‐analysis. Neurosci Biobehav Rev. 2019;102:123‐138.
    1. Ljubenkov PA, Staffaroni AM, Rojas JC, et al. Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory. Ann Clin Transl Neurol. 2018;5:1250‐1263.
    1. Rohrer JD, Woollacott IO, Dick KM, et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology. 2016;87:1329‐1336.
    1. Rojas JC, Karydas A, Bang J, et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Clin Transl Neurol. 2016;3:216‐225.
    1. Meeter LH, Dopper EG, Jiskoot LC, et al. Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Transl Neurol. 2016;3:623‐636.
    1. Kramer JH, Mungas D, Possin KL, et al. NIH EXAMINER: conceptualization and development of an executive function battery. J Int Neuropsychol Soc. 2013:1‐9.
    1. Jiskoot LC, Dopper EG, Heijer T, et al. Presymptomatic cognitive decline in familial frontotemporal dementia: a longitudinal study. Neurology. 2016;87:384‐391.
    1. Dopper EG, Rombouts SA, Jiskoot LC, et al. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology. 2014;83:e19‐e26.
    1. Olm CA, McMillan CT, Irwin DJ, et al. Longitudinal structural gray matter and white matter MRI changes in presymptomatic progranulin mutation carriers. Neuroimage Clin. 2018;19:497‐506.
    1. Panman JL, Jiskoot LC, Bouts M, et al. Gray and white matter changes in presymptomatic genetic frontotemporal dementia: a longitudinal MRI study. Neurobiol Aging. 2019;76:115‐124.
    1. Lee SE, Sias AC, Mandelli ML, et al. Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. Neuroimage Clin. 2017;14:286‐297.
    1. Dopper EG, Chalos V, Ghariq E, et al. Cerebral blood flow in presymptomatic MAPT and GRN mutation carriers: a longitudinal arterial spin labeling study. Neuroimage Clin. 2016;12:460‐465.
    1. Jacova C, Hsiung GY, Tawankanjanachot I, et al. Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers. Neurology. 2013;81:1322‐1331.
    1. Chen Q, Boeve BF, Tosakulwong N, et al. Frontal lobe 1H MR spectroscopy in asymptomatic and symptomatic MAPT mutation carriers. Neurology. 2019;. 93(8):e758‐e765.
    1. Lee JM, Ramos EM, Lee JH, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78:690‐695.
    1. Mendez MF. Early‐onset Alzheimer disease and its variants. Continuum (Minneap Minn). 2019;25:34‐51.
    1. Greaves CV, Rohrer JD. An update on genetic frontotemporal dementia. J Neurol. 2019;266(8):2075‐2086.
    1. Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr. 1997;9:173‐176; discussion 7‐8.
    1. Staffaroni AM, Cobigo Y, Goh SM, et al. Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration. Alzheimers Dement. 2019.
    1. Jiskoot LC, Panman JL, Meeter LH, et al. Longitudinal multimodal MRI as prognostic and diagnostic biomarker in presymptomatic familial frontotemporal dementia. Brain. 2019;142:193‐208.
    1. Feis RA, Bouts M, de Vos F, et al. A multimodal MRI‐based classification signature emerges just prior to symptom onset in frontotemporal dementia mutation carriers. J Neurol Neurosurg Psychiatry. 2019;90(11):1207‐1214.
    1. Chen Q, Boeve BF, Schwarz CG, et al. LEFFTDS Consortium Tracking white matter degeneration in asymptomatic and symptomatic MAPT mutation carriers. Neurobiol Aging. 2019;83:54‐62.
    1. Chen Q, Boeve BF, Tosakulwong N, et al. Brain MR spectroscopy changes precede frontotemporal lobar degeneration phenoconversion in mapt mutation carriers. J Neuroimaging. 2019;29(5):624‐629.
    1. Khan BK, Yokoyama JS, Takada LT, et al. Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion. J Neurol Neurosurg Psychiatry. 2012;83:358‐364.
    1. Llamas‐Velasco S, Garcia‐Redondo A, Herrero‐San Martin A, et al. Slowly progressive behavioral frontotemporal dementia with C9orf72 mutation. Case report and review of the literature. Neurocase. 2018;24:68‐71.
    1. Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nat Med. 2019;25:277‐283.
    1. Boeve BF, Rosen HJ. Multimodal imaging in familial FTLD: phenoconversion and planning for the future. Brain. 2019;142:8‐11.

Source: PubMed

3
Subskrybuj