The INVENT COVID trial: a structured protocol for a randomized controlled trial investigating the efficacy and safety of intravenous imatinib mesylate (Impentri®) in subjects with acute respiratory distress syndrome induced by COVID-19

Leila Atmowihardjo, Job R Schippers, Imke H Bartelink, Pierre M Bet, Nienke van Rein, Keith Purdy, David Cavalla, Valérie Comberiati, Andrew McElroy, Sue D Snape, Harm Jan Bogaard, Leo Heunks, Nicole Juffermans, Marcus Schultz, Pieter R Tuinman, Lieuwe D J Bos, Jurjan Aman, Leila Atmowihardjo, Job R Schippers, Imke H Bartelink, Pierre M Bet, Nienke van Rein, Keith Purdy, David Cavalla, Valérie Comberiati, Andrew McElroy, Sue D Snape, Harm Jan Bogaard, Leo Heunks, Nicole Juffermans, Marcus Schultz, Pieter R Tuinman, Lieuwe D J Bos, Jurjan Aman

Abstract

Background: The coronavirus disease 2019 (COVID-19) pandemic has led to a disruptive increase in the number of intensive care unit (ICU) admissions with acute respiratory distress syndrome (ARDS). ARDS is a severe, life-threatening medical condition characterized by widespread inflammation and vascular leak in the lungs. Although there is no proven therapy to reduce pulmonary vascular leak in ARDS, recent studies demonstrated that the tyrosine kinase inhibitor imatinib reinforces the endothelial barrier and prevents vascular leak in inflammatory conditions, while leaving the immune response intact.

Methods: This is a randomized, double-blind, parallel-group, placebo-controlled, multicenter clinical trial of intravenous (IV) imatinib mesylate in 90 mechanically ventilated subjects with COVID-19-induced ARDS. Subjects are 18 years or older, admitted to the ICU for mechanical ventilation, meeting the Berlin criteria for moderate-severe ARDS with a positive polymerase chain reaction test for SARS-CoV2. Participants will be randomized in a 1:1 ratio to either imatinib (as mesylate) 200 mg bis in die (b.i.d.) or placebo IV infusion for 7 days, or until ICU discharge or death. The primary study outcome is the change in Extravascular Lung Water Index (EVLWi) between day 1 and day 4. Secondary outcome parameters include changes in oxygenation and ventilation parameters, duration of invasive mechanical ventilation, number of ventilator-free days during the 28-day study period, length of ICU stay, and mortality during 28 days after randomization. Additional secondary parameters include safety, tolerability, and pharmacokinetics.

Discussion: The current study aims to investigate the efficacy and safety of IV imatinib in mechanically ventilated subjects with COVID-19-related ARDS. We hypothesize that imatinib decreases pulmonary edema, as measured by extravascular lung water using a PiCCO catheter. The reduction in pulmonary edema may reverse hypoxemic respiratory failure and hasten recovery. As pulmonary edema is an important contributor to ARDS, we further hypothesize that imatinib reduces disease severity, reflected by a reduction in 28-day mortality, duration of mechanical ventilation, and ICU length of stay.

Trial status: Protocol version and date: V3.1, 16 April 2021. Recruitment started on 09 March 2021. Estimated recruitment period of approximately 40 weeks.

Trial registration: ClinicalTrials.gov NCT04794088 . Registered on 11 March 2021.

Keywords: ARDS; COVID-19; Endothelial dysfunction; Extravascular lung water; Imatinib; Protocol; Randomized controlled trial; Vascular permeability.

Conflict of interest statement

JA is the inventor of a patent (WO2012150857A1, 2011) covering protection against endothelial barrier dysfunction through inhibition of the tyrosine kinase Abl-related gene (Arg). JA has served as a non-compensated scientific advisor for ExvastatTM. All other authors have no competing interests.

© 2022. The Author(s).

References

    1. Network ARDS, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Amado-Azevedo J, van Stalborch AD, Valent ET, Nawaz K, van Bezu J, Eringa EC, Hoevenaars FPM, De Cuyper IM, Hordijk PL, van Hinsbergh VWM, van Nieuw Amerongen GP, Aman J, Margadant C. Depletion of Arg/Abl2 improves endothelial cell adhesion and prevents vascular leak during inflammation. Angiogenesis. 2021;26:1–17. doi: 10.1007/s10456-021-09808-3.
    1. Aman J, van Bezu J, Damanafshan A, Huveneers S, Eringa EC, Vogel SM, Groeneveld ABJ, Vonk Noordegraaf A, van Hinsbergh VWM, van Nieuw Amerongen GP. Effective treatment of edema and endothelial barrier dysfunction with imatinib. Circulation. 2012;126(23):2728–2738. doi: 10.1161/CIRCULATIONAHA.112.134304.
    1. Aman J, Duijvelaar E, Botros L, Kianzad A, Schippers JR, Smeele PJ, et al. Oral imatinib to prevent pulmonary vascular leak in Covid-19 – a randomized, double-blind, placebo controlled, clinical trial in patients with severe Covid-19. Lancet Respir Med. 2021;9(9); 957-968.
    1. Aman J, Peters MJL, Weenink C, van Nieuw Amerongen GP, Vonk-Noordegraaf A. Reversal of vascular leak with imatinib. American Journal of Respiratory and Critical Care Medicine. 2013;188(9):1171–3. doi: 10.1164/rccm.201301-0136LE.
    1. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: The Berlin Definition. JAMA. 2012;307(23):2526–2533. doi: 10.1001/jama.2012.5669.
    1. Brown LM, Calfee CS, Howard JP, Craig TR, Matthay MA, McAuley DF. Comparison of thermodilution measured extravascular lung water with chest radiographic assessment of pulmonary oedema in patients with acute lung injury. Ann Intens Care. 2013;3(1):25. doi: 10.1186/2110-5820-3-25.
    1. Carnevale-Schianca F, Gallo S, Rota-Scalabrini D, Sangiolo D, Fizzotti M, Caravelli D, Capaldi A, Anselmetti G, Palesandro E, D'Ambrosio L, Coha V, Obert R, Aglietta M, Grignani G. Complete resolution of life-threatening bleomycin-induced pneumonitis after treatment with imatinib mesylate in a patient with Hodgkin's lymphoma: hope for severe chemotherapy-induced toxicity. J Clin Oncol. 2011;29(24):e691–e693. doi: 10.1200/JCO.2011.35.6733.
    1. Chislock EM, Pendergast AM. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS ONE. 2013;8:e85231. doi: 10.1371/journal.pone.0085231.
    1. Combes A, Hajage D, Capellier G. et al; EOLIA Trial Group, REVA, ECMONet. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–1975. doi: 10.1056/NEJMoa1800385.
    1. Craig TR, Duffy MJ, Shyamsundar M, McDowell C, O'Kane CM, Elborn JS, McAuley DF. A randomized clinical trial of hydroxymethylglutaryl- coenzyme a reductase inhibition for acute lung injury (The HARP Study) Am J Respir Crit Care Med. 2011;183(5):620–626. doi: 10.1164/rccm.201003-0423OC.
    1. Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood. 1997;90(9):3691–3698. doi: 10.1182/blood.V90.9.3691.
    1. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805. doi: 10.1056/NEJMoa1215554.
    1. Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, et al. The REMAP-CAP Investigators. Interleukin-6 receptor antagonists in critically Ill patients with Covid-19. N Engl J Med. 2021; Epub ahead of print.
    1. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, et al; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-2168, 10.1056/NEJMoa1214103.
    1. Hill LT. Gut dysfunction in the critically ill − mechanisms and clinical implications. S Afr J Crit Care. 2013;29(1):11–15. doi: 10.7196/SAJCC.148.
    1. Kaneko T, Kawamura Y, Maekawa T, et al. PiCCO Pulmonary Edema Study Group. Global end-diastolic volume is an important contributor to increased extravascular lung water in patients with acute lung injury and acuterespiratory distress syndrome: a multicenter observational study. J Intensive Care. 2014;2(1):25. doi: 10.1186/2052-0492-2-25.
    1. Kim IK, Rhee CK, Yeo CD, Kang HH, Lee DG, Lee SH, Kim JW. Effect of tyrosine kinase inhibitors, imatinib and nilotinib, in murine lipopolysaccharide-induced acute lung injury during neutropenia recovery. Crit Care. 2013;17(3):R114. doi: 10.1186/cc12786.
    1. Koning NJ, de Lange F, van Meurs M, Ahmed Y, Schwarte LA, van Nieuw Amerongen GP, Vonk ABA, Niessen HW, Baufreton C, Boer C. Reduction of vascular leakage by imatinib is associated with preserved microcirculatory perfusion and reduced renal injury markers in a rat model of cardiopulmonary bypass. Br J Anaesth. 2018;120(6):1165–e1175. doi: 10.1016/j.bja.2017.11.095.
    1. Kurimoto N, Nan YS, Chen ZY, Feng GG, Komatsu T, Kandatsu N, Ko J, Kawai N, Ishikawa N. Effects of specific signal transduction inhibitors on increased permeability across rat endothelial monolayers induced by neuropeptide Y or VEGF. Am J Physiol Heart Circ Physiol. 2004;287(1):H100–H106. doi: 10.1152/ajpheart.00922.2003.
    1. Kushimoto S. A bedside definition of acute respiratory distress syndrome based on a conceptual model. Crit Care. 2013;17(2):418. doi: 10.1186/cc12539.
    1. Langberg MK, Berglund-Nord C, Cohn-Cedermark G, Haugnes HS, Tandstad T, Langberg CW. Imatinib may reduce chemotherapy-induced pneumonitis. A report on four cases from the SWENOTECA. Acta Oncol. 2018;57(10):1401–1406. doi: 10.1080/0284186X.2018.1479072.
    1. Letsiou E, Rizzo AN, Sammani S, Naureckas P, Jacobson JR, Garcia JGN, Dudek SM. Differential and opposing effects of imatinib on LPS- and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2015;308(3):L259–L269. doi: 10.1152/ajplung.00323.2014.
    1. Maggio R, Peragine N, De Propris MS, et al. Immunocompetent cell functions in Ph + acute lymphoblastic leukemia patients on prolonged imatinib maintenance treatment. Cancer Immunol Immunother. 2011;60(4):599–607. doi: 10.1007/s00262-010-0966-2.
    1. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731–2740. doi: 10.1172/JCI60331.
    1. Matthay MA, McAuley DF, Ware LB. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med. 2017;5(6):524–534. doi: 10.1016/S2213-2600(17)30188-1.
    1. Montejo JC. Enteral nutrition-related gastrointestinal complications in critically ill patients: a multicenter study. The Nutritional and Metabolic Working Group of the Spanish Society of Intensive Care Medicine and Coronary Units. Crit Care Med. 1999;27(8):1447–1453. doi: 10.1097/00003246-199908000-00006.
    1. Mumprecht S, Matter M, Pavelic V, Ochsenbein AF. Imatinib mesilate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections. Blood. 2006;108(10):3406–3413. doi: 10.1182/blood-2006-04-018705.
    1. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. 10.1056/NEJMoa062200.
    1. Overbeek MJ, van Nieuw Amerongen GP, Boonstra A, Smit EF, Vonk-Noordegraaf A. Possible role of imatinib in clinical pulmonary veno-occlusive disease. Eur Respir J. 2008;32(1):232–235. doi: 10.1183/09031936.00054407.
    1. Papazian L, Forel JM, Gacouin A. et al; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Peng B, Dutreix C, Mehring G, Hayes MJ, Ben-Am M, Seiberling M, Pokorny R, Capdeville R, Lloyd P. Absolute bioavailability of imatinib (Glivec) orally versus intravenous infusion. J Clin Pharmacol. 2004;44(2):158–162. doi: 10.1177/0091270003262101.
    1. Perkins GD, McAuley DF, Thickett DR, Gao F. The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med. 2006;173(3):281–287. doi: 10.1164/rccm.200508-1302OC.
    1. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N Engl J Med. 2020; Epub ahead of print. PMID: .
    1. Rhee CK, Lee SH, Yoon HK, Kim SC, Lee SY, Kwon SS, Kim YK, Kim KH, Kim TJ, Kim JW. Effect of nilotinib on bleomycin-induced acute lung injury and pulmonary fibrosis in mice. Respiration. 2011;82(3):273–287. doi: 10.1159/000327719.
    1. Rizzo AN, Aman J, van Nieuw Amerongen GP, Dudek SM. Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome. Arterioscler Thromb Vasc Biol. 2015;35(5):1071–1079. doi: 10.1161/ATVBAHA.115.305085.
    1. Schmidt M, Hajage D, Lebreton G, Monsel A, Voiriot G, Levy D, Baron E, Beurton A, Chommeloux J, Meng P, Nemlaghi S, Bay P, Leprince P, Demoule A, Guidet B, Constantin JM, Fartoukh M, Dres M, Combes A, Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université. Paris-Sorbonne ECMO-COVID investigators Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université; Paris-Sorbonne ECMO-COVID investigators. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020;8(11):1121–1131. doi: 10.1016/S2213-2600(20)30328-3.
    1. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;S1473-3099(20):30086–30084.
    1. Singh N, Kumar L, Meena R, Velpandian T. Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol. 2009;65(6):545–549. doi: 10.1007/s00228-009-0621-z.
    1. Stephens RS, Johnston L, Servinsky L, Kim BS, Damarla M. The tyrosine kinase inhibitor imatinib prevents lung injury and death after intravenous LPS in mice. Physiol Rep. 2015;3(pii):e12589. doi: 10.14814/phy2.12589.
    1. Tagami T, Nakamura T, Kushimoto S, Tosa R, Watanabe A, Kaneko T, Fukushima H, Rinka H, Kudo D, Uzu H, Murai A, Takatori M, Izumino H, Kase Y, Seo R, Takahashi H, Kitazawa Y, Yamaguchi J, Sugita M, Takahashi H, Kuroki Y, Kanemura T, Morisawa K, Saito N, Irahara T, Yokota H. Early-phase changes of extravascular lung water index as a prognostic indicator in acute respiratory distress syndrome patients. Ann Intensive Care. 2014;4(1):27. doi: 10.1186/s13613-014-0027-7.
    1. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of Coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793. doi: 10.1001/jama.2020.12839.
    1. World Health Organization . Novel Coronavirus COVID-19 Therapeutic Trial Synopsis. Geneva, Switzerland: WHO R&D Blueprint; 2020.
    1. Wu Z, JM MG. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;10(13). 10.1001/jama.2020.2648.

Source: PubMed

3
Subskrybuj