Establishing the HLS-Q12 short version of the European Health Literacy Survey Questionnaire: latent trait analyses applying Rasch modelling and confirmatory factor analysis

Hanne Søberg Finbråten, Bodil Wilde-Larsson, Gun Nordström, Kjell Sverre Pettersen, Anne Trollvik, Øystein Guttersrud, Hanne Søberg Finbråten, Bodil Wilde-Larsson, Gun Nordström, Kjell Sverre Pettersen, Anne Trollvik, Øystein Guttersrud

Abstract

Background: The European Health Literacy Survey Questionnaire (HLS-EU-Q47) is widely used in assessing health literacy (HL). There has been some controversy whether the comprehensive HLS-EU-Q47 data, reflecting a conceptual model of four cognitive domains across three health domains (i.e. 12 subscales), fit unidimensional Rasch models. Still, the HLS-EU-Q47 raw score is commonly interpreted as a sufficient statistic. Combining Rasch modelling and confirmatory factor analysis, we reduced the 47 item scale to a parsimonious 12 item scale that meets the assumptions and requirements of objective measurement while offering a clinically feasible HL screening tool. This paper aims at (1) evaluating the psychometric properties of the HLS-EU-Q47 and associated short versions in a large Norwegian sample, and (2) establishing a short version (HLS-Q12) with sufficient psychometric properties.

Methods: Using computer-assisted telephone interviews during November 2014, data were collected from 900 randomly sampled individuals aged 16 and over. The data were analysed using the partial credit parameterization of the unidimensional polytomous Rasch model (PRM) and the 'between-item' multidimensional PRM, and by using one-factorial and multi-factorial confirmatory factor analysis (CFA) with categorical variables.

Results: Using likelihood-ratio tests to compare data-model fit for nested models, we found that the observed HLS-EU-Q47 data were more likely under a 12-dimensional Rasch model than under a three- or a one-dimensional Rasch model. Several of the 12 theoretically defined subscales suffered from low reliability owing to few items. Excluding poorly discriminating items, items displaying differential item functioning and redundant items violating the assumption of local independency, a parsimonious 12-item HLS-Q12 scale is suggested. The HLS-Q12 displayed acceptable fit to the unidimensional Rasch model and achieved acceptable goodness-of-fit indexes using CFA.

Conclusions: Unlike the HLS-EU-Q47 data, the parsimonious 12-item version (HLS-Q12) meets the assumptions and the requirements of objective measurement while offering clinically feasible screening without applying advanced psychometric methods on site. To avoid invalid measures of HL using the HLS-EU-Q47, we suggest using the HLS-Q12. Valid measures are particularly important in studies aiming to explain the variance in the latent trait HL, and explore the relation between HL and health outcomes with the purpose of informing policy makers.

Keywords: Confirmatory factor analysis of categorical data; HLS-EU-Q47; HLS-Q12; Health literacy; Rasch modelling; Short version; Validation.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Norwegian Social Science Data Service (NSD), ref. 38,917. Subject participation was voluntary, and questionnaires were completed anonymously. As data were collected using telephone interviews, verbal informed consent was obtained from the participants. This procedure was approved by the NSD.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Model fit of the HLS-EU-Q47 after applying various analysis approaches. Figure 1 shows the overall fit statistics for the one-dimensional approach (all subscale correlations fixed to 1), the consecutive approach (treating the three health domains as orthogonal or uncorrelated) and the two-, three- and 12-dimensional approaches (treating the theoretical subscales as correlated). A: access, B: understand, C: appraise, D: apply (cognitive domains). HC: health care, DP: disease prevention, HP: health promotion (health domains). Δ: change in parameter, AIC: Akaike’s information criterion, cv: critical value, D: deviance, df: degrees of freedom, ep: number of estimated parameters, LRT: likelihood ratio test. PSR: person separation reliability based on marginal maximum likelihood estimate/Warm’s mean weighted likelihood estimate

References

    1. Kickbusch I, Pelikan JM, Apfel F, Tsouros AD (eds.). Health Literacy. The solid facts. Copenhagen: WHO Regional Office for Europe; 2013. . Accessed 8 June 2017.
    1. Vandenbosch J, Van den Broucke S, Vancorenland S, Avalosse H, Verniest R, Callens M. Health literacy and the use of healthcare services in Belgium. J Epidemiol Community Health. 2016;70(10):1032–1038. doi: 10.1136/jech-2015-206910.
    1. Sørensen K, Pelikan JM, Rothlin F, Ganahl K, Slonska Z, Doyle G, Fullam J, Kondilis B, Agrafiotis D, Uiters E, et al. Health literacy in Europe: comparative results of the European health literacy survey (HLS-EU) Eur J Pub Health. 2015;25(6):1053–1058. doi: 10.1093/eurpub/ckv043.
    1. Berkman ND, Sheridan SL, Donahue KE, Halpern DJ, Crotty K. Low health literacy and health outcomes: an updated systematic review. Ann Intern Med. 2011;155(2):97. doi: 10.7326/0003-4819-155-2-201107190-00005.
    1. Bostock S, Steptoe A. Association between low functional health literacy and mortality in older adults: longitudinal cohort study. BMJ 2012; 3l4:e1602.
    1. von Wagner C, Knight K, Steptoe A, Wardle J. Functional health literacy and health-promoting behaviour in a national sample of British adults. J Epidemiol Community Health. 2007;61(12):1086–1090. doi: 10.1136/jech.2006.053967.
    1. Fernandez DM, Larson JL, Zikmund-Fisher BJ. Associations between health literacy and preventive health behaviors among older adults: findings from the health and retirement study (report) BMC Public Health. 2016;16(1):596. doi: 10.1186/s12889-016-3267-7.
    1. Jayasinghe UW, Harris MF, Parker SM, Litt J, van Driel M, Mazza D, Del Mar C, Lloyd J, Smith J, Zwar N. The impact of health literacy and life style risk factors on health-related quality of life of Australian patients. Health Qual Life Outcomes. 2016;14(1):68. doi: 10.1186/s12955-016-0471-1.
    1. Palumbo R, Annarumma C, Adinolfi P, Musella M, Piscopo G. The Italian health literacy project: insights from the assessment of health literacy skills in Italy. Health Policy. 2016;120(9):1087–1094. doi: 10.1016/j.healthpol.2016.08.007.
    1. Geboers B, Reijneveld SA, Jansen CJM, de Winter AF. Health literacy is associated with health behaviors and social factors among older adults: results from the LifeLines cohort study. J Health Commun. 2016;21(Suppl 2):45–53. doi: 10.1080/10810730.2016.1201174.
    1. HLS-EU Consortium. Comparative report of health literacy in eight EU member states. The European Health Literacy Survey HLS-EU. 2012;
    1. Levin-Zamir D, Baron-Epel OB, Cohen V, Elhayany A. The association of health literacy with health behavior, socioeconomic indicators, and self-assessed health from a national adult survey in Israel. J Health Commun. 2016;21(Suppl 2):61–68. doi: 10.1080/10810730.2016.1207115.
    1. Parker RM, Baker DW, Williams MV, Nurss JR. The test of functional health literacy in adults: a new instrument for measuring patients' literacy skills. J Gen Intern Med. 1995;10(10):537–541. doi: 10.1007/BF02640361.
    1. Davis TC, Long SW, Jackson RH, Mayeaux E, George RB, Murphy PW, Crouch MA. Rapid estimate of adult literacy in medicine: a shortened screening instrument. Fam Med. 1993;25(6):391–395.
    1. Sørensen K, Van den Broucke S, Pelikan JM, Fullam J, Doyle G, Slonska Z, Kondilis B, Stoffels V, Osborne RH, Brand H. Measuring health literacy in populations: illuminating the design and development process of the European health literacy survey questionnaire (HLS-EU-Q) BMC Public Health. 2013;13(1):948. doi: 10.1186/1471-2458-13-948.
    1. Sørensen K, Van den Broucke S, Fullam J, Doyle G, Pelikan J, Slonska Z, Brand H. Health literacy and public health: a systematic review and integration of definitions and models. BMC Public Health. 2012;12(1):1–13. doi: 10.1186/1471-2458-12-80.
    1. Duong TV, Lin I-F, Sørensen K, Pelikan JM, Van Den Broucke S, Lin Y-C, Chang PW. Health literacy in Taiwan: a population-based study. Asia Pac J Public Health. 2015;27(8):871–880. doi: 10.1177/1010539515607962.
    1. Nakayama K, Osaka W, Togari T, Ishikawa H, Yonekura Y, Sekido A, Matsumoto M. Comprehensive health literacy in Japan is lower than in Europe: a validated Japanese-language assessment of health literacy. BMC Public Health. 2015;15(1):505. doi: 10.1186/s12889-015-1835-x.
    1. Duong TV, Aringazina A, Baisunova G, Nurjanah PTV, Pham KM, Truong TQ, Nguyen KT, Oo WM, Mohamad E, et al. Measuring health literacy in Asia: validation of the HLS-EU-Q47 survey tool in six Asian countries. J Epidemiol. 2017;27(2):80–86. doi: 10.1016/j.je.2016.09.005.
    1. Finbråten HS, Pettersen KS, Wilde-Larsson B, Nordström G, Trollvik A, Guttersrud Ø. Validating the European health literacy survey questionnaire in people with type 2 diabetes. Latent trait analyses applying multidimensional Rasch modelling and confirmatory factor analysis. J Adv Nurs. 2017;73(11):2730–2744. doi: 10.1111/jan.13342.
    1. Huang Y-J, Chen C-T, Lin G-H, Wu T-Y, Chen S-S, Lin L-F, Hou W-H, Hsieh C-L. Evaluating the European health literacy survey questionnaire in patients with stroke: a latent trait analysis using Rasch modeling. Patient. 2018;11(1):83–93. doi: 10.1007/s40271-017-0267-3.
    1. Toci E, Burazeri G, Sorensen K, Kamberi H, Brand H. Concurrent validation of two key health literacy instruments in a south eastern European population. Eur J Pub Health. 2015;25(3):482–486. doi: 10.1093/eurpub/cku190.
    1. Berens E-M, Vogt D, Messer M, Hurrelmann K, Schaeffer D. Health literacy among different age groups in Germany: results of a cross-sectional survey. BMC Public Health. 2016;16(1):1151. doi: 10.1186/s12889-016-3810-6.
    1. Schaeffer D, Berens EM, Vogt D. Health literacy in the German population. Deutsches Arzteblatt International. 2017;114(4):53–60.
    1. Pleasant A, McKinney J, Rikard R. Health literacy measurement: a proposed research agenda. J Health Commun. 2011;16(Suppl 3):11–21. doi: 10.1080/10810730.2011.604392.
    1. Duong TV, Chang PW, Yang S-H, Chen M-C, Chao W-T, Chen T, Chiao P. Huang H-L. a new comprehensive short-form health literacy survey tool for patients in general. Asian Nurs Res (Korean Soc Nurs Sci) 2017;11(1):30–35. doi: 10.1016/j.anr.2017.02.001.
    1. Andrich D. Distinctions between assumptions and requirements in measurement in the social sciences. In: Keats JA, Taft R, Heath RA, Lovibond SH, editors. Mathematical and theoretical systems. North Holland: Elsevier science publishers BV. 1989. pp. 7–16.
    1. Stenner AJ. Specific objectivity - local and general. Rasch Measurement Transactions. 1994;8(3):374.
    1. Andersen EB. Sufficient statistics and latent trait models. Psychometrika. 1977;42(1):69–81. doi: 10.1007/BF02293746.
    1. Andrich D. Rasch models for measurement. Newsbury Park, CA: Sage; 1988.
    1. Osteen P. An introduction to using multidimensional item response theory to assess latent factor structures. J Soc Social Work Res. 2010;1(2):66–82. doi: 10.5243/jsswr.2010.6.
    1. DeMars CE. A comparison of confirmatory factor analysis and multidimensional Rasch models to investigate the dimensionality of test-taking motivation. J Appl Meas. 2013;14(2):179–196.
    1. European Countries by Population . Accessed 2 May 2018.
    1. Masters GN. A Rasch model for partial credit scoring. Psychometrika. 1982;47(2):149–174. doi: 10.1007/BF02296272.
    1. Rasch G. Probabilistic models for some intelligence and attainment tests, expanded edn. Chicago: University of Chicago Press; 1980.
    1. Adams RJ, Wilson MR, Wang W-C. The multidimensional random coefficients multinomial logit model. Appl Psychol Meas. 1997;21(1):1–23. doi: 10.1177/0146621697211001.
    1. Andrich D, Sheridan B, Luo G. RUMM laboratory Pty ltd. 2003. Rasch unidimensional measurment model. RUMM2030.
    1. Adams RJ, Wu ML, ACERConQuest WMR. Generalised item response modelling software. 4. Camberwell, Victoria: Australian council for Educational Research; 2015.
    1. Jöreskog K, Sörbom D. LISREL 9.3 software. Skokie: Scientific Software International, Inc; 2017.
    1. RUMM Laboratory Pty Ltd . Displaying the RUMM 2030 Analysis. Duncraig, Australia: RUMM Laboratory Pty Ltd.; 2012.
    1. Hagell P. Testing rating scale unidimensionality using the principal component analysis (PCA)/t-test protocol with the Rasch model: the primacy of theory over statistics. Open J Stat. 2014;4:456–465. doi: 10.4236/ojs.2014.46044.
    1. Smith EV. Understanding Rasch measurement: detecting and evaluating the impact of multidimenstionality using item fit statistics and principal component analysis of residuals. J Appl Meas. 2002;3:205–231.
    1. Horton M, Marais I, Christensen KB. Dimensionality. In: Christensen KB, Kreiner S, Mesbah M, editors. Rasch models in health. Hoboken, NJ USA: John Wiley & Sons, Inc.; 2013.
    1. RUMM Laboratory Pty Ltd . Interpreting RUMM2030. Part IV Multidimensionality and subtests in RUMM. Duncraig, Australia: RUMM Laboratory Pty Ltd.; 2009.
    1. Adams R, Wu M. Multidimensional models. In ConQuest Tutorial 2010. . Accessed 31 Oct 2017.
    1. Andrich D, Humphry SM, Marais I. Quantifying local, response dependence between two polytomous items using the Rasch model. Appl Psychol Meas. 2012;36(4):309–324. doi: 10.1177/0146621612441858.
    1. Wilks SS. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Stat. 1938;9(1):60–62. doi: 10.1214/aoms/1177732360.
    1. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19(6):716–723. doi: 10.1109/TAC.1974.1100705.
    1. Allen DD, Wilson M. Introducing multidimensional item response modeling in health behavior and health education research. Health Educ Res. 2006;21(Suppl 1):i73–i84. doi: 10.1093/her/cyl086.
    1. Smith RM. Using item mean squares to evaluate fit to the Rasch model. In: the Annual Meeting of the American Educational Research Association. San Francisco, CA; 1995.
    1. Tennant A, Conaghan P. The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis Care Res. 2007;57(8):1358–1362. doi: 10.1002/art.23108.
    1. Andrich D. Rating scales and Rasch measurement. Expert Rev Pharmacoecon Outcomes Res. 2011;11(5):571–585. doi: 10.1586/erp.11.59.
    1. Hagquist C. Evaluating composite health measures using Rasch modelling: an illustrative example. Soz Praventivmed/Soc Prev Med. 2001;46(6):369–378. doi: 10.1007/BF01321663.
    1. Hagquist C, Bruce M, Gustavsson JP. Using the Rasch model in nursing research: an introduction and illustrative example. Int J Nurs Stud. 2009;46(3):380–393. doi: 10.1016/j.ijnurstu.2008.10.007.
    1. Bandalos DL, Finney SJ. Factor analysis; exploratory and confirmatory. In: Hancock GR, Mueller RO, Stapleton LM, editors. The reviewer's guide to quantitative methods in the social sciences. New York: Routledge; 2010.
    1. Joreskog KG, Olsson UH, Wallentin FY. Springer international publishing. 2016. Multivariate analysis with LISREL.
    1. Satorra A, Bentler PM. A scaled difference chi-square test statistic for moment structure analysis. Psychometrika. 2001;66(4):507–514. doi: 10.1007/BF02296192.
    1. Satorra A, Bentler PM. Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika. 2010;75(2):243–248. doi: 10.1007/s11336-009-9135-y.
    1. Schumacker RE. Lomax RG. A beginner's guide to structural equation modeling. 3. New York: Routledge; 2010.
    1. Hu Lt BPM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6(1):1–55. doi: 10.1080/10705519909540118.
    1. Brown TA. Confirmatory factor analysis for applied research. New York: Guilford Publications; 2015.
    1. Hancock GR, Mueller RO. Rethinking construct reliability within latent variable systems. In: Cudeck R, du Toit S, Sorbom D, Lincolnwood IL, editors. Structural equation modeling: present and future - a Festschrift in honor of Karl Joreskog. Scientific software international. 2001. pp. 195–216.
    1. Frisbie DA. Reliability of scores from teacher-made tests. Educ Meas: Issues Pract. 1988;7(1):25–35. doi: 10.1111/j.1745-3992.1988.tb00422.x.
    1. Masters GN. Item discrimination: when more is worse. J Educ Meas. 1988;25(1):15–29. doi: 10.1111/j.1745-3984.1988.tb00288.x.
    1. Wolfe EW, Singh K. A comparison of structural equation and multidimensional Rasch modeling approaches to confirmatory factor analysis. J Appl Meas. 2011;12(3):212–221.
    1. Preston CC, Colman AM. Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Psychol. 2000;104(1):1–15. doi: 10.1016/S0001-6918(99)00050-5.
    1. Nutbeam D. Discussion paper on promoting, measuring and implementing health literacy - implications for policy and practice in non-communicable disease prevention and control. World Health Organ. 2017:1–29.
    1. Statistics Norway. Befolkningens utdanningsnivå [Educational attainment of the population]. . Accessed 2 Oct 2017.
    1. Linacre JM. Constructing measurement with a many-facet Rasch model. In: Wilson M, editor. Objective measurement: theory Practice (Vol.2) Newark, NJ: Ablex; 1994.
    1. Hair JF. Multivariate data analysis. 7. Harlow: Pearson; 2014.

Source: PubMed

3
Subskrybuj