Morphological and cytokine profiles as key parameters to distinguish between Gram-negative and Gram-positive bacterial keratitis

Aris Konstantopoulos, Maria Del Mar Cendra, Michael Tsatsos, Mariam Elabiary, Myron Christodoulides, Parwez Hossain, Aris Konstantopoulos, Maria Del Mar Cendra, Michael Tsatsos, Mariam Elabiary, Myron Christodoulides, Parwez Hossain

Abstract

Bacterial keratitis (BK) is an ocular disorder associated with poor visual prognosis. Quantification of the associated inflammatory response may provide insight into the pathogenesis of BK and guide treatment options. In this exploratory study, we evaluated 45 BK patients and 20 healthy controls by optical coherence tomography and pro-inflammatory tear cytokine analysis. The aim was to quantify the differential morphological and cytokine inflammatory response between Gram-negative and Gram-positive BK and to determine the diagnostic value of corneal thickness (CT) and infiltrate thickness (IT) in distinguishing Gram-ve BK in a clinical cohort. Greater CT and IT, at clinical presentation, were indicative of Gram-ve infection with values detected of ≥ 950 μm and ≥ 450 μm, respectively. Combination of these CT and IT values had a 100% sensitivity and 83.3% specificity as a diagnostic indicator of Gram-ve infection. Similarly, there were higher levels of IL-1β, IL-6 and IL-8 cytokines were quantified in keratitis caused by Gram-negative bacteria. Among the different tear cytokines analysed, a significant reduction after three days of treatment was detected for pro-inflammatory cytokines IL-1β, IL-2, IL-6, IL-8 and TNF-α, prior to starting with the administration of steroid drops. Overall, this study shows the potential value of serial OCT and tear cytokine measurements in the management of BK.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Anterior segment optical coherence imaging protocol for bacterial keratitis (ac) and controls (d, e). (a) Picture of bacterial keratitis, illustrating the anterior segment optical coherence tomography (AS-OCT) imaging protocol with the same axis high resolution scan carried out at presentation and after resolution of infection. (b) An AS-OCT scan at presentation, illustrating the measurement of corneal thickness (810 μm) and infiltrate thickness (270 μm) at presentation. (c) Measurement of final corneal thickness (440 μm) once the infection has resolved. (d) Four-quadrant AS-OCT scans of the control healthy cornea. The flap tool was used to identify a central 4 mm area, a mid-peripheral area defined by the 4 mm zone and an outer 8 mm zone, and a peripheral area extending from the 8 mm zone to the limbus. The corneal thickness was measured in the centre of each area on all four scans with calliper tools and the mean corneal thickness of all patients plotted. (e) The plotted corneal thickness maps of healthy control subjects.
Figure 2
Figure 2
Comparison of AS-OCT quantification parameters between Gram−ve, Gram+ve and microbiology negative bacterial keratitis. (a) There was a significant difference in presentation corneal thickness between Gram−ve and Gram+ve groups, and between Gram−ve and microbiology negative groups, but not between Gram+ve and microbiology negative groups. (b) There was a significant difference in presentation infiltrate thickness between Gram−ve and Gram+ve BK, and Gram−ve and microbiology negative BK, but not between Gram+ve and microbiology negative BK (p = 1.0). (c) There was a significant difference in corneal tissue swelling between Gram−ve and Gram+ve groups, and Gram−ve and microbiology negative groups, but not between Gram+ve and microbiology negative groups. (d) There was a borderline significant difference in corneal tissue loss between Gram−ve and Gram+ve BK (p = 0.12), a significant difference between Gram−ve and microbiology negative BK, and no significant difference between Gram+ve and microbiology negative BK.
Figure 3
Figure 3
Quantification of the cytokine and chemokine levels present in tears. Comparison of cytokine and chemokines levels (pg/ml) present in tears between bacterial keratitis (BK) and control (a) and Gram−ve versus Gram+ve bacterial keratitis (b) at presentation are shown in the plots. All cytokines/chemokines were elevated at presentation of bacterial keratitis compared to controls, except for IL-12p70. The levels of IL-1β, IL-6 and IL-8 were significantly greater in Gram−ve than Gram+ve bacterial keratitis. Asterisks over the bars denote statistical significance (p < 0.05).
Figure 4
Figure 4
Time course cytokine and chemokine change in resolving bacterial keratitis. Quantification of IL-1β, IFN-γ, GM-CSF, IL-10, IL-12, IL-2, IL-6, IL-8 and TNF-α levels (pg/ml) at presentation and after 3, 4 and 14 days of treatment. A statistically significant reduction was found for IL-1β (p = 0.034), IFN-γ (p = 0.037), IL-2 (p = 0.04), IL-6 (p < 0.001), IL-8 (p = 0.004) and TNF-α (p = 0.008); a reduction of borderline statistical significance was found for GM-CSF (p = 0.068), IL-10 (p = 0.059) and IL12p70 (p = 0.068). The mean [SD] and median [IQR] values of each cytokine concentration, as well as the levels of their induction in BK compared to control tears (BK/control) at presentation and after 3, 7 and 14 days of treatment are specified in the Supplementary Table 3.

References

    1. Dart JK. Predisposing factors in microbial keratitis: The significance of contact lens wear. Br. J. Ophthalmol. 1988;72:926–930. doi: 10.1136/bjo.72.12.926.
    1. Keay L, et al. Microbial keratitis predisposing factors and morbidity. Ophthalmology. 2006;113:109–116. doi: 10.1016/j.ophtha.2005.08.013.
    1. Pachigolla G, Blomquist P, Cavanagh HD. Microbial keratitis pathogens and antibiotic susceptibilities: A 5-year review of cases at an urban county hospital in north Texas. Eye Contact Lens. 2007;33:45–49. doi: 10.1097/01.icl.0000234002.88643.d0.
    1. Ibrahim YW, Boase DL, Cree IA. Epidemiological characteristics, predisposing factors and microbiological profiles of infectious corneal ulcers: The Portsmouth corneal ulcer study. Br. J. Ophthalmol. 2009;93:1319–1324. doi: 10.1136/bjo.2008.151167.
    1. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L. Bacterial keratitis: Predisposing factors, clinical and microbiological review of 300 cases. Br. J. Ophthalmol. 2003;87:834–838. doi: 10.1136/bjo.87.7.834.
    1. Dahlgren MA, Lingappan A, Wilhelmus KR. The clinical diagnosis of microbial keratitis. Am. J. Ophthalmol. 2007;143:940–944. doi: 10.1016/j.ajo.2007.02.030.
    1. Dalmon C, et al. The clinical differentiation of bacterial and fungal keratitis: A photographic survey. Invest. Ophthalmol. Vis. Sci. 2012;53:1787–1791. doi: 10.1167/iovs.11-8478.
    1. Konstantopoulos A, Kuo J, Anderson D, Hossain P. Assessment of the use of anterior segment optical coherence tomography in microbial keratitis. Am. J. Ophthalmol. 2008;146:534–542. doi: 10.1016/j.ajo.2008.05.030.
    1. Konstantopoulos A, Yadegarfar G, Fievez M, Anderson DF, Hossain P. In vivo quantification of bacterial keratitis with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2011;52:1093–1097. doi: 10.1167/iovs.10-6067.
    1. Hazlett LD. Corneal response to Pseudomonas aeruginosa infection. Prog. Retin. Eye Res. 2004;23:1–30. doi: 10.1016/j.preteyeres.2003.10.002.
    1. Weng J, Mohan RR, Li Q, Wilson SE. IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: Interleukin-1 beta expression in the cornea. Cornea. 1997;16:465–471. doi: 10.1097/00003226-199707000-00015.
    1. Gouwy M, Struyf S, Proost P, Van Damme J. Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine Growth Factor Rev. 2005;16:561–580. doi: 10.1016/j.cytogfr.2005.03.005.
    1. Hume E, Sack R, Stapleton F, Willcox M. Induction of cytokines from polymorphonuclear leukocytes and epithelial cells by ocular isolates of Serratia marcescens. Ocul. Immunol. Inflamm. 2004;12:287–295. doi: 10.1080/092739490500318.
    1. Sun Y, et al. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J. Immunol. 2010;185:4272–4283. doi: 10.4049/jimmunol.1000874.
    1. Li Q, Kumar A, Gui JF, Yu FS. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2. Microb. Pathog. 2008;44:426–434. doi: 10.1016/j.micpath.2007.11.006.
    1. Zaidi TS, Zaidi T, Pier GB. Role of neutrophils, MyD88-mediated neutrophil recruitment, and complement in antibody-mediated defense against Pseudomonas aeruginosa keratitis. Invest. Ophthalmol. Vis. Sci. 2010;51:2085–2093. doi: 10.1167/iovs.09-4139.
    1. VanDerMeid KR, Su SP, Krenzer KL, Ward KW, Zhang JZ. A method to extract cytokines and matrix metalloproteinases from Schirmer strips and analyze using Luminex. Mol. Vis. 2011;17:1056–1063.
    1. Yamaguchi T, et al. Correlation between human tear cytokine levels and cellular corneal changes in patients with bacterial keratitis by in vivo confocal microscopy. Invest. Ophthalmol. Vis. Sci. 2014;55:7457–7466. doi: 10.1167/iovs.14-15411.
    1. Santacruz C, et al. Expression of IL-8, IL-6 and IL-1beta in tears as a main characteristic of the immune response in human microbial keratitis. Int. J. Mol. Sci. 2015;16:4850–4864. doi: 10.3390/ijms16034850.
    1. Hazlett LD. Role of innate and adaptive immunity in the pathogenesis of keratitis. Ocul. Immunol. Inflamm. 2005;13:133–138. doi: 10.1080/09273940490912362.
    1. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87:2095–2147. doi: 10.1182/blood.V87.6.2095.bloodjournal8762095.
    1. Hogquist KA, Unanue ER, Chaplin DD. Release of IL-1 from mononuclear phagocytes. J. Immunol. 1991;147:2181–2186.
    1. Cassatella MA, Meda L, Bonora S, Ceska M, Constantin G. Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J. Exp. Med. 1993;178:2207–2211. doi: 10.1084/jem.178.6.2207.
    1. Fukuda M, Mishima H, Otori T. Detection of interleukin-1 beta in the tear fluid of patients with corneal disease with or without conjunctival involvement. Jpn. J. Ophthalmol. 1997;41:63–66. doi: 10.1016/S0021-5155(97)00009-9.
    1. Cubitt CL, Tang Q, Monteiro CA, Lausch RN, Oakes JE. IL-8 gene expression in cultures of human corneal epithelial cells and keratocytes. Invest. Ophthalmol. Vis Sci. 1993;34:3199–3206.
    1. Karthikeyan RS, et al. Host response and bacterial virulence factor expression in Pseudomonas aeruginosa and Streptococcus pneumoniae corneal ulcers. PLoS ONE. 2013;8:e64867. doi: 10.1371/journal.pone.0064867.
    1. Cole N, et al. Effects of exogenous interleukin-6 during Pseudomonas aeruginosa corneal infection. Infect. Immun. 2001;69:4116–4119. doi: 10.1128/IAI.69.6.4116-4119.2001.
    1. Hume EB, Cole N, Garthwaite LL, Khan S, Willcox MD. A protective role for IL-6 in staphylococcal microbial keratitis. Invest. Ophthalmol. Vis. Sci. 2006;47:4926–4930. doi: 10.1167/iovs.06-0340.
    1. Pearlman E, et al. Host defense at the ocular surface. Int. Rev. Immunol. 2013;32:4–18. doi: 10.3109/08830185.2012.749400.
    1. Cendra MDM, Christodoulides M, Hossain P. Signaling mediated by Toll-like receptor 5 sensing of Pseudomonas aeruginosa flagellin influences IL-1beta and IL-18 production by primary fibroblasts derived from the human cornea. Front. Cell Infect. Microbiol. 2017;7:130. doi: 10.3389/fcimb.2017.00130.
    1. Fleiszig SM, et al. Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect. Immun. 1996;64:2288–2294. doi: 10.1128/IAI.64.6.2288-2294.1996.
    1. Borkar DS, et al. Association between cytotoxic and invasive Pseudomonas aeruginosa and clinical outcomes in bacterial keratitis. JAMA Ophthalmol. 2013;131:147–153. doi: 10.1001/jamaophthalmol.2013.778.
    1. Shen EP, Hsieh YT, Chu HS, Chang SC, Hu FR. Correlation of Pseudomonas aeruginosa genotype with antibiotic susceptibility and clinical features of induced central keratitis. Invest. Ophthalmol. Vis. Sci. 2014;56:365–371. doi: 10.1167/iovs.14-15241.
    1. O’Callaghan RJ. The pathogenesis of Staphylococcus aureus eye infections. Pathogens. 2018 doi: 10.3390/pathogens7010009.
    1. Astley R, Miller FC, Mursalin MH, Coburn PS, Callegan MC. An eye on Staphylococcus aureus Toxins: Roles in ocular damage and inflammation. Toxins Basel. 2019;11:66. doi: 10.3390/toxins11060356.
    1. Heimer SR, Yamada A, Russell H, Gilmore M. Response of corneal epithelial cells to Staphylococcus aureus. Virulence. 2010;1:223–235. doi: 10.4161/viru.1.4.11466.
    1. Girard MT, Matsubara M, Fini ME. Transforming growth factor-beta and interleukin-1 modulate metalloproteinase expression by corneal stromal cells. Invest. Ophthalmol. Vis. Sci. 1991;32:2441–2454.
    1. Meller D, Li DQ, Tseng SC. Regulation of collagenase, stromelysin, and gelatinase B in human conjunctival and conjunctivochalasis fibroblasts by interleukin-1beta and tumor necrosis factor-alpha. Invest. Ophthalmol. Vis. Sci. 2000;41:2922–2929.
    1. Hazlett LD. Bacterial infections of the cornea (Pseudomonas aeruginosa) Chem. Immunol. Allergy. 2007;92:185–194. doi: 10.1159/000099269.
    1. Morgan PB, et al. Incidence of keratitis of varying severity among contact lens wearers. Br. J. Ophthalmol. 2005;89:430–436. doi: 10.1136/bjo.2004.052688.
    1. Matsumoto K, Ikema K, Tanihara H. Role of cytokines and chemokines in pseudomonal keratitis. Cornea. 2005;24:S43–S49. doi: 10.1097/01.ico.0000178737.35297.d4.
    1. Allan BD, Dart JK. Strategies for the management of microbial keratitis. Br. J. Ophthalmol. 1995;79:777–786. doi: 10.1136/bjo.79.8.777.
    1. Srinivasan M, et al. The steroids for corneal ulcers trial: Study design and baseline characteristics. Arch. Ophthalmol. 2012;130:151–157. doi: 10.1001/archophthalmol.2011.303.
    1. Ray KJ, et al. Early addition of topical corticosteroids in the treatment of bacterial keratitis. JAMA Ophthalmol. 2014;132:737–741. doi: 10.1001/jamaophthalmol.2014.292.
    1. Hazlett LD, Hendricks RL. Reviews for immune privilege in the year 2010: Immune privilege and infection. Ocul. Immunol. Inflamm. 2010;18:237–243. doi: 10.3109/09273948.2010.501946.
    1. Sridhar MS, Martin R. Anterior segment optical coherence tomography for evaluation of cornea and ocular surface. Indian J. Ophthalmol. 2018;66:367–372. doi: 10.4103/ijo.IJO_823_17.
    1. Otri AM, Fares U, Al-Aqaba MA, Dua HS. Corneal densitometry as an indicator of corneal health. Ophthalmology. 2012;119:501–508. doi: 10.1016/j.ophtha.2011.08.024.
    1. Liesegang TJ, Forster RK. Spectrum of microbial keratitis in South Florida. Am. J. Ophthalmol. 1980;90:38–47. doi: 10.1016/S0002-9394(14)75075-5.
    1. Alexandrakis G, Alfonso EC, Miller D. Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones. Ophthalmology. 2000;107:1497–1502. doi: 10.1016/S0161-6420(00)00179-2.
    1. Lichtinger A, et al. Shifting trends in bacterial keratitis in Toronto: An 11-year review. Ophthalmology. 2012;119:1785–1790. doi: 10.1016/j.ophtha.2012.03.031.
    1. Shah A, Sachdev A, Coggon D, Hossain P. Geographic variations in microbial keratitis: An analysis of the peer-reviewed literature. Br. J. Ophthalmol. 2011;95:762–767. doi: 10.1136/bjo.2009.169607.
    1. Srinivasan M, et al. Epidemiology and aetiological diagnosis of corneal ulceration in Madurai, south India. Br. J. Ophthalmol. 1997;81:965–971. doi: 10.1136/bjo.81.11.965.
    1. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014;27:870–926. doi: 10.1128/CMR.00109-13.
    1. Egrilmez S, Yildirim-Theveny S. Treatment-resistant bacterial keratitis: Challenges and solutions. Clin. Ophthalmol. 2020;14:287–297. doi: 10.2147/OPTH.S181997.
    1. Tavassoli S, et al. An 11-year analysis of microbial keratitis in the South West of England using brain–heart infusion broth. Eye (London) 2019;33:1619–1625. doi: 10.1038/s41433-019-0463-6.
    1. England, P. H. Specialist and Reference Microbiology: Laboratory Tests and Services, (2014).
    1. Wong Y, Sethu C, Louafi F, Hossain P. Lipopolysaccharide regulation of toll-like receptor-4 and matrix metalloprotease-9 in human primary corneal fibroblasts. Invest. Ophthalmol. Vis. Sci. 2011;52:2796–2803. doi: 10.1167/iovs.10-5459.
    1. Lang TA, Altman DG. Basic statistical reporting for articles published in biomedical journals: The "Statistical Analyses and Methods in the Published Literature" or the SAMPL guidelines. Int. J. Nurs. Stud. 2015;52:5–9. doi: 10.1016/j.ijnurstu.2014.09.006.

Source: PubMed

3
Subskrybuj