Short-Term Changes in Left and Right Ventricular Cardiac Magnetic Resonance Feature Tracking Strain Following Ferric Carboxymaltose in Patients With Heart Failure: A Substudy of the Myocardial-IRON Trial

Irene Del Canto, Enrique Santas, Ingrid Cardells, Gema Miñana, Patricia Palau, Pau Llàcer, Lorenzo Fácila, Raquel López-Vilella, Luis Almenar, Vicent Bodí, Maria P López-Lereu, Jose V Monmeneu, Juan Sanchis, David Moratal, Alicia M Maceira, Rafael de la Espriella, Francisco J Chorro, Antoni Bayés-Genís, Julio Núñez, Myocardial‐IRON Investigators †, Julio Núñez, Enrique Santas, Gema Miñana, Patricia Palau, Martina Amiguet, Jessika González, Ernesto Valero, Sergio García-Blas, Vicent Bodí, Rafael de la Espriella-Juan, Jorge Navarro, Juan Sanchis, Francisco J Chorro, Meritxell Soler, Amparo Villaescusa, Jose Civera, Anna Mollar, Alicia Serrano, Pau Llácer, Maria Del Carmen Moreno, Ingrid Cardells, Lorenzo Fácila, Vicente Montagud, Veronica Vidal, Luis Almenar, Raquel López-Vilella, Irene Del Canto, Enrique Santas, Ingrid Cardells, Gema Miñana, Patricia Palau, Pau Llàcer, Lorenzo Fácila, Raquel López-Vilella, Luis Almenar, Vicent Bodí, Maria P López-Lereu, Jose V Monmeneu, Juan Sanchis, David Moratal, Alicia M Maceira, Rafael de la Espriella, Francisco J Chorro, Antoni Bayés-Genís, Julio Núñez, Myocardial‐IRON Investigators †, Julio Núñez, Enrique Santas, Gema Miñana, Patricia Palau, Martina Amiguet, Jessika González, Ernesto Valero, Sergio García-Blas, Vicent Bodí, Rafael de la Espriella-Juan, Jorge Navarro, Juan Sanchis, Francisco J Chorro, Meritxell Soler, Amparo Villaescusa, Jose Civera, Anna Mollar, Alicia Serrano, Pau Llácer, Maria Del Carmen Moreno, Ingrid Cardells, Lorenzo Fácila, Vicente Montagud, Veronica Vidal, Luis Almenar, Raquel López-Vilella

Abstract

Background The mechanisms explaining the clinical benefits of ferric carboximaltose (FCM) in patients with heart failure, reduced or intermediate left ventricular ejection fraction, and iron deficiency remain not fully clarified. The Myocardial-IRON trial showed short-term cardiac magnetic resonance (CMR) changes suggesting myocardial iron repletion following administration of FCM but failed to find a significant increase in left ventricular ejection fraction in the whole sample. Conversely, the strain assessment could evaluate more specifically subtle changes in contractility. In this subanalysis, we aimed to evaluate the effect of FCM on the short-term left and right ventricular CMR feature tracking derived strain. Methods and Results This is a post hoc subanalysis of the double-blind, placebo-controlled, randomized clinical trial that enrolled 53 ambulatory patients with heart failure and left ventricular ejection fraction <50%, and iron deficiency [Myocardial-IRON trial (NCT03398681)]. Three-dimensional left and 2-dimensional right ventricular CMR tracking strain (longitudinal, circumferential, and radial) changes were evaluated before, 7 and 30 days after randomization using linear mixed-effect analysis. The median (interquartile range) age of the sample was 73 years (65-78), and 40 (75.5%) were men. At baseline, there were no significant differences in CMR feature tracking strain parameters across both treatment arms. At 7 days, the only global 3-dimensional left ventricular circumferential strain was significantly higher in the FCM treatment-arm (difference: -1.6%, P=0.001). At 30 days, and compared with placebo, global 3-dimensional left ventricular strain parameters significantly improved in those allocated to FCM treatment-arm [longitudinal (difference: -2.3%, P<0.001), circumferential (difference: -2.5%, P<0.001), and radial (difference: 4.2%, P=0.002)]. Likewise, significant improvements in global right ventricular strain parameters were found in the active arm at 30 days (longitudinal [difference: -3.3%, P=0.010], circumferential [difference: -4.5%, P<0.001], and radial [difference: 4.5%, P=0.027]). Conclusions In patients with stable heart failure, left ventricular ejection fraction <50%, and iron deficiency, treatment with FCM was associated with short-term improvements in left and right ventricular function assessed by CMR feature tracking derived strain parameters. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03398681.

Keywords: CMR feature tracking; ferric carboxymaltose; heart failure; iron deficiency; ventricular strain.

Figures

Figure 1. Left ventricular (LV) and right…
Figure 1. Left ventricular (LV) and right ventricular (RV) cardiac magnetic resonance feature tracking in the short‐axis (A), and 2‐chamber (B), 3‐chamber (C), and 4‐chamber (D) cine images at end‐diastole.
The red and green curves delineate the endocardial and epicardial contours in LV, respectively; the yellow and cyan curves delineate the endocardial and epicardial contours in the RV, respectively. The blue and magenta points represent the superior and inferior RV insertion points on short‐axis cines (A). The blue (LV) and orange (RV) lines are used to define the base and apex of the mitral annulus plane and the apical plane (B through D). Representation of LV global longitudinal strain, global circumferential strain, and global radial strain curves using 3D cardiac magnetic resonance feature tracking (E through G). Representation of RV global longitudinal strain, global circumferential strain, and global radial strain curves using 2D cardiac magnetic resonance feature tracking (H through J).
Figure 2. Differences in left vetricular (LV)…
Figure 2. Differences in left vetricular (LV) strain on cardiac magnetic resonance feature tracking at 7 and 30 days following the administration of ferric carboxymaltose in patients included in the Myocardial‐IRON trial.
Values are presented as the least square means from each linear mixed model. All models were adjusted by the participant center (as a cluster variable), the interaction term treatment visit (7 and 30 days), age, sex, and the baseline (pretreatment) value of the regressed outcome. (A) LV 3D‐GLS. (B) LV 3D‐GCS. (C) LV 3D‐GRS. 3D‐GCS indicates 3‐dimensional global circumferential strain; 3D‐GLS, 3‐dimensional global longitudinal strain; and 3D‐GRS, 3‐dimensional global radial strain.
Figure 3. Differences in right ventricular (RV)…
Figure 3. Differences in right ventricular (RV) strain on cardiac magnetic resonance feature tracking at 7 and 30 days following the administration of ferric carboxymaltose in patients included in the Myocardial‐IRON trial.
Values are presented as the least square means from each linear mixed effects model. All models were adjusted by the participant center (as a cluster variable), the interaction term treatment*visit (7 and 30 days), age, sex, and the baseline (pretreatment) value of the regressed outcome. (A) RV 2D‐GLS. (B) RV 2D‐GCS. (C) RV 2D‐GRS. 2D‐GCS indicates 2‐dimensional global circumferential strain; 2D‐GLS, 2‐dimensional global longitudinal strain; and 2D‐GRS, 2‐dimensional global radial strain.
Figure 4. Association of left ventricular 3D‐global…
Figure 4. Association of left ventricular 3D‐global radial strain with changes in myocardial iron content (T2*).
Values are the least‐square means (95% CIs) from each linear regression analysis. LV 3D‐GRS indicates left ventricular 3‐dimensional global radial strain.
Figure 5. Overview for the short‐term improvements…
Figure 5. Overview for the short‐term improvements in left and right ventricular function, assessed by cardiac magnetic resonance feature tracking derived strain parameters, on patients with stable heart failure and iron deficiency after treatment with ferric carboxymaltose.
CMR indicates cardiac magnetic resonance; CS, circumferential strain; FCM, ferric carboxymaltose; LS, longitudinal strain; LV, left ventricular; RS, radial strain; RV, right ventricular; and SSFP, steady‐state free precession.

References

    1. Rocha BML, Cunha GJL, Menezes Falcao LF. The burden of iron deficiency in heart failure: therapeutic approach. J Am Coll Cardiol. 2018;71:782–793. doi: 10.1016/j.jacc.2017.12.027
    1. Núñez J, Comín‐Colet J, Miñana G, Núñez E, Santas E, Mollar A, Valero E, García‐Blas S, Cardells I, Bodí V, et al. Iron deficiency and risk of early readmission following a hospitalization for acute heart failure Eur J Heart Fail. 2016;18:798–802. doi: 10.1002/ejhf.513
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González‐Juanatey JR, Harjola V‐P, Jankowska EA, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. doi: 10.1002/ejhf.592
    1. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Lüscher TF, Bart B, Banasiak W, Niegowska J, et al; FAIR‐HF Trial Investigators . Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–2448. doi: 10.1056/NEJMoa0908355
    1. Ponikowski P, van Veldhuisen DJ, Comin‐Colet J, Ertl G, Komajda M, Mareev V, McDonagh T, Parkhomenko A, Tavazzi L, Levesque V, et al; CONFIRM‐HF Investigators . Beneficial effects of long‐term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J. 2015;36:657–668. doi: 10.1093/eurheartj/ehu385
    1. Anker SD, Kirwan B‐A, van Veldhuisen DJ, Filippatos G, Comin‐Colet J, Ruschitzka F, Lüscher TF, Arutyunov GP, Motro M, Mori C, et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron‐deficient heart failure patients: an individual patient data meta‐analysis. Eur J Heart Fail. 2018;20:125–133. doi: 10.1002/ejhf.823
    1. Ponikowski P, Kirwan B‐A, Anker SD, McDonagh T, Dorobantu M, Drozdz J, Fabien V, Filippatos G, Göhring UM, Keren A, et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double‐blind, randomised, controlled trial. Lancet. 2020;396:1895–1904. doi: 10.1016/S0140-6736(20)32339-4
    1. Ghafourian K, Chang HC, Ardehali H. Intravenous iron therapy in heart failure: a different perspective. Eur J Heart Fail. 2019;21:703–714. doi: 10.1002/ejhf.1434
    1. Ghafourian K, Shapiro JS, Goodman L, Ardehali H. Iron and heart failure. J Am Coll Cardiol Basic Trans Sci. 2020;5:300–313.
    1. Kobak KA, Radwańska M, Dzięgała M, Kasztura M, Josiak K, Banasiak W, Ponikowski P, Jankowska EA. Structural and functional abnormalities in iron‐depleted heart. Heart Fail Rev. 2019;24:269–277. doi: 10.1007/s10741-018-9738-4
    1. Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail. 2018;20:910–919. doi: 10.1002/ejhf.1154
    1. Nuñez J, Minana G, Cardells I, Palau P, Llacer P, Facila L, Almenar L, Lopez‐Lereu MP, Monmeneu JV, Amiguet M, Myocardial‐IRON Investigators , et al Non‐invasive imaging estimation of myocardial iron repletion following administration of intravenous iron: the myocardial‐IRON Trial. J Am Heart Assoc. 2020;9:e014254. doi: 10.1161/JAHA.119.014254
    1. Halliday BP, Senior R, Pennell DJ. Assessing left ventricular systolic function: from ejection fraction to strain analysis. Eur Heart J. 2021;42:789–797. doi: 10.1093/eurheartj/ehaa587
    1. Choi E‐Y, Rosen BD, Fernandes VRS, Yan RT, Yoneyama K, Donekal S, Opdahl A, Almeida ALC, Wu CO, Gomes AS, et al. Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi‐Ethnic Study of Atherosclerosis. Eur Heart J. 2013;34:2354–2361. doi: 10.1093/eurheartj/eht133
    1. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ. Global 2‐dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol. 2009;54:618–624. doi: 10.1016/j.jacc.2009.04.061
    1. Scatteia A, Baritussio A, Bucciarelli‐Ducci C. Strain imaging using cardiac magnetic resonance. Heart Fail Rev. 2017;22:465–476. doi: 10.1007/s10741-017-9621-8
    1. Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S. Cardiovascular magnetic resonance myocardial feature tracking. Circ Cardiovasc Imaging. 2016;9:e004077. doi: 10.1161/CIRCIMAGING.115.004077
    1. Miñana G, Cardells I, Palau P, Llàcer P, Fácila L, Almenar L, López‐Lereu MP, Monmeneu JV, Amiguet M, González J, et al. Myocardial‐IRON investigators . Changes in myocardial iron content following administration of intravenous iron (Myocardial‐IRON): study design. Clin Cardiol. 2018;41:729–735. doi: 10.1002/clc.22956
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González‐Juanatey JR, Harjola V‐P, Jankowska EA, et al. ESC Scientific Document Group . 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128
    1. Nutritional anaemias . Report of a WHO scientific group. Geneva: World Health Organization; 1968. (WHO Technical Report Series, No. 405).
    1. Weintraub WS, Karlsberg RP, Tcheng JE, Boris JR, Buxton AE, Dove JT, Fonarow GC, Goldberg LR, Heidenreich P, Hendel RC, et al. ACCF/AHA 2011 key data elements and definitions of a base cardiovascular vocabulary for electronic health records: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Data Standards. J Am Coll Cardiol. 2011;58:202–222. doi: 10.1016/j.jacc.2011.05.001
    1. Gatti M, Palmisano A, Faletti R, Benedetti G, Bergamasco L, Bioletto F, Peretto G, Sala S, De Cobelli F, Fonio P, et al. Two‐dimensional and three‐dimensional cardiac magnetic resonance feature‐tracking myocardial strain analysis in acute myocarditis patients with preserved ejection fraction. Int J Cardiovasc Imaging. 2019;35:1101–1109. doi: 10.1007/s10554-019-01588-8
    1. Liu B, Dardeer AM, Moody WE, Hayer MK, Biag S, Price AM, Leyva F, Edwards NC, Steeds RP. Reference ranges for three‐dimensional feature tracking cardiac magnetic resonance: comparison with two‐dimensional methodology and relevance of age and gender. Int J Cardiovasc Imaging. 2018;34:761–775. doi: 10.1007/s10554-017-1277-x
    1. Schmidt B, Dick A, Treutlein M, Schiller P, Bunck AC, Maintz D, Baeßler B. Intra‐ and inter‐observer reproducibility of global and regional magnetic resonance feature tracking derived strain parameters of the left and right ventricle. Eur J Radiol. 2017;89:97–105. doi: 10.1016/j.ejrad.2017.01.025
    1. He T. Cardiovascular magnetic resonance T2* for tissue iron assessment in the heart. Quant Imaging Med Surg. 2014;4:407–412. doi: 10.3978/j.issn.2223-4292.2014.10.05
    1. Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials ‐ a practical guide with flowcharts. BMC Med Res Methodol. 2017;17:162. doi: 10.1186/s12874-017-0442-1
    1. Klip IT, Comin‐Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W, Lok DJ, Rosentryt P, Torrens A, Polonski L, et al. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J. 2013;165:575–582.e573. doi: 10.1016/j.ahj.2013.01.017
    1. von Haehling S, Gremmler U, Krumm M, Mibach F, Schon N, Taggeselle J, Dahm JB, Angermann CE. Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: the PrEP Registry. Clin Res Cardiol. 2017;106:436–443. doi: 10.1007/s00392-016-1073-y
    1. Leszek P, Sochanowicz B, Szperl M, Kolsut P, Brzóska K, Piotrowski W, Rywik TM, Danko B, Polkowska‐Motrenko H, Różański JM, et al. Myocardial iron homeostasis in advanced chronic heart failure patients. Int J Cardiol. 2012;159:47–52. doi: 10.1016/j.ijcard.2011.08.006
    1. Alioglu B, Cetin II, Emeksiz ZS, Dindar N, Tapci E, Dallar Y. Iron deficiency anemia in infants: does it really affect the myocardial functions? Pediatr Hematol Oncol. 2013;30:239–245. doi: 10.3109/08880018.2012.763077
    1. Cotroneo E, Ashek A, Wang L, Wharton J, Dubois O, Bozorgi S, Busbridge M, Alavian KN, Wilkins MR, Zhao L. Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat. Circ Res. 2015;116:1680–1690. doi: 10.1161/CIRCRESAHA.116.305265
    1. Miñana G, Santas E, de la Espriella R, Núñez E, Lorenzo M, Núñez G, Valero E, Bodí V, Chorro FJ, Sanchis J, et al. Right ventricular function and iron deficiency in acute heart failure. Eur Heart J Acute Cardiovasc Care. 2021;10:406–414. doi: 10.1093/ehjacc/zuaa028
    1. Parissis JT, Kourea K, Panou F, Farmakis D, Paraskevaidis I, Ikonomidis I, Filippatos G, Kremastinos DT. Effects of darbepoetin alpha on right and left ventricular systolic and diastolic function in anemic patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am Heart J. 2008;155:e751–e757. doi: 10.1016/j.ahj.2008.01.016
    1. Toblli JE, Di Gennaro F, Rivas C. Changes in echocardiographic parameters in iron deficiency patients with heart failure and chronic kidney disease treated with intravenous iron. Heart Lung Circ. 2015;24:686–695. doi: 10.1016/j.hlc.2014.12.161
    1. Gaber R, Kotb NA, Ghazy M, Nagy HM, Salama M, Elhendy A. Tissue Doppler and strain rate imaging detect improvement of myocardial function in iron deficient patients with congestive heart failure after iron replacement therapy. Echocardiography. 2012;29:13–18. doi: 10.1111/j.1540-8175.2011.01532.x
    1. Santas E, Miñana G, Cardells I, Palau P, Llàcer P, Fácila L, Almenar L, López‐Lereu MP, Monmeneu JV, Sanchis J, et al; Myocardial‐IRON Investigators . Short‐term changes in left and right systolic function following ferric carboxymaltose: a substudy of the Myocardial‐IRON trial. ESC Heart Fail. 2020;7:4222–4230. doi: 10.1002/ehf2.13053
    1. Badano LP, Addetia K, Pontone G, Torlasco C, Lang RM, Parati G, Muraru D. Advanced imaging of right ventricular anatomy and function. Heart. 2020;106:1469–1476. doi: 10.1136/heartjnl-2019-315178

Source: PubMed

3
Subskrybuj