Cardiovascular Effects of Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Therapy With Early Tacrolimus Withdrawal in Renal Transplant Recipients: An Analysis of the Randomized TRITON Study

Maria Chiara Meucci, Marlies E J Reinders, Koen E Groeneweg, Suzanne Bezstarosti, Nina Ajmone Marsan, Jeroen J Bax, Johan W De Fijter, Victoria Delgado, Maria Chiara Meucci, Marlies E J Reinders, Koen E Groeneweg, Suzanne Bezstarosti, Nina Ajmone Marsan, Jeroen J Bax, Johan W De Fijter, Victoria Delgado

Abstract

Background After renal transplantation, there is a need of immunosuppressive regimens that effectively prevent allograft rejection while minimizing cardiovascular complications. This substudy of the TRITON trial evaluated the cardiovascular effects of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in renal transplant recipients. Methods and Results Renal transplant recipients were randomized to MSC therapy, infused at weeks 6 and 7 after transplantation, with withdrawal at week 8 of tacrolimus or standard tacrolimus dose. Fifty-four patients (MSC group=27; control group=27) underwent transthoracic echocardiography at weeks 4 and 24 after transplantation and were included in this substudy. Changes in clinical and echocardiographic variables were compared. The MSC group showed a benefit in blood pressure control, assessed by a significant interaction between changes in diastolic blood pressure and the treatment group (P=0.005), and a higher proportion of patients achieving the predefined blood pressure target of <140/90 mm Hg compared with the control group (59.3% versus 29.6%, P=0.03). A significant reduction in left ventricular mass index was observed in the MSC group, whereas there were no changes in the control group (P=0.002). The proportion of patients with left ventricular hypertrophy decreased at 24 weeks in the MSC group (33.3% versus 70.4%, P=0.006), whereas no changes were noted in the control group (63.0% versus 48.1%, P=0.29). Additionally, MSC therapy prevented progressive left ventricular diastolic dysfunction, as demonstrated by changes in mitral deceleration time and tricuspid regurgitant jet velocity. Conclusions MSC strategy is associated with improved blood pressure control, regression of left ventricular hypertrophy, and prevention of progressive diastolic dysfunction at 24 weeks after transplantation. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03398681.

Keywords: immunosuppression; left ventricular diastolic function; left ventricular hypertrophy; mesenchymal stem cells; renal transplantation.

Figures

Figure 1. Population included in the cardiovascular…
Figure 1. Population included in the cardiovascular subanalysis of the TRITON study.
Of 70 renal transplant recipients randomly assigned to MSC therapy or standard tacrolimus regimen, 57 patients received the allocated treatment and were included in the TRITON trial. Patients who underwent transthoracic echocardiography at 4 and 24 weeks after renal transplantation (n=54) were selected for this substudy. MSC indicates mesenchymal stromal cells; and Tx, transplantation.
Figure 2. Changes in left ventricular mass…
Figure 2. Changes in left ventricular mass (LVM) index over time.
Changes in estimated marginal means of LVM index between 4 and 24 weeks after transplantation in each treatment group. Error bars denote the standard error of the mean. *P<0.05 vs baseline within each treatment group. †P value calculated using an ANCOVA model with baseline adjustment. MSC indicates mesenchymal stromal cells.
Figure 3. Example of the changes in…
Figure 3. Example of the changes in left ventricular (LV) hypertrophy in each treatment group.
This figure illustrates an example of the changes in linear dimensions and LV hypertrophy between 4 and 24 weeks after transplantation in each treatment group. The upper panels (A and B) show the worsening of LV hypertrophy in a male patient of the control group (increase of left ventricular mass [LVM] index from 95 to 130 g/m2). The lower panels (C and D) display the regression of LV hypertrophy in a male patient of the mesenchymal stromal cells group (decrease of LVM index from 118 to 102 g/m2).

References

    1. Ying T, Shi B, Kelly PJ, Pilmore H, Clayton PA, Chadban SJ. Death after kidney transplantation: an analysis by era and time post‐transplant. J Am Soc Nephrol. 2020;31:2887–2899. doi: 10.1681/ASN.2020050566
    1. Jardine AG, Gaston RS, Fellstrom BC, Holdaas H. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet. 2011;378:1419–1427. doi: 10.1016/S0140-6736(11)61334-2
    1. Chapman JR, O’Connell PJ, Nankivell BJ. Chronic renal allograft dysfunction. J Am Soc Nephrol. 2005;16:3015. doi: 10.1681/ASN.2005050463
    1. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;10:1815–1822. doi: 10.1182/blood-2004-04-1559
    1. Galleu A, Riffo‐Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, von Bonin M, Barbieri L, Halai K, Ward S, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient‐mediated immunomodulation. Sci Transl Med. 2017;9:eaam7828. doi: 10.1126/scitranslmed.aam7828
    1. Perico N, Casiraghi F, Introna M, Gotti E, Todeschini M, Cavinato RA, Capelli C, Rambaldi A, Cassis P, Rizzo P, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011;6:412–422. doi: 10.2215/CJN.04950610
    1. Reinders MEJ, de Fijter JW, Roelofs H, Bajema IM, de Vries DK, Schaapherder AF, Claas FHJ, van Miert PPMC, Roelen DL, van Kooten C, et al. Autologous bone marrow‐derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013;2:107–111. doi: 10.5966/sctm.2012-0114
    1. Dreyer GJ, Groeneweg KE, Heidt S, Roelen DL, Pel M, Roelofs H, Huurman VAL, Bajema IM, Moes DJAR, Fibbe WE, et al. Human leukocyte antigen selected allogeneic mesenchymal stromal cell therapy in renal transplantation: the Neptune study, a phase I single‐center study. Am J Transplant. 2020;20:2905–2915. doi: 10.1111/ajt.15910
    1. Erpicum P, Weekers L, Detry O, Bonvoisin C, Delbouille M‐H, Grégoire C, Baudoux E, Briquet A, Lechanteur C, Maggipinto G, et al. Infusion of third‐party mesenchymal stromal cells after kidney transplantation: a phase I‐II, open‐label, clinical study. Kidney Int. 2019;95:693–707. doi: 10.1016/j.kint.2018.08.046
    1. Lalu MM, Mazzarello S, Zlepnig J, Dong YYR, Montroy J, McIntyre L, Devereaux PJ, Stewart DJ, David Mazer C, Barron CC, et al. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): a systematic review and meta‐analysis. Stem Cells Transl Med. 2018;7:857–866. doi: 10.1002/sctm.18-0120
    1. Zeier M, Van Der Giet M. Calcineurin inhibitor sparing regimens using m‐target of rapamycin inhibitors: an opportunity to improve cardiovascular risk following kidney transplantation? Transpl Int. 2011;24:30–42. doi: 10.1111/j.1432-2277.2010.01140.x
    1. McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004;109:3050–3055. doi: 10.1161/01.CIR.0000130641.08705.45
    1. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S. Rapamycin attenuates load‐induce cardiac hypertrophy in mice. Circulation. 2003;107:1664–1670. doi: 10.1161/01.CIR.0000057979.36322.88
    1. Gao XM, Wong G, Wang B, Kiriazis H, Moore XL, Su YD, Dart A, Du XJ. Inhibition of mTOR reduces chronic pressure‐overload cardiac hypertrophy and fibrosis. J Hypertens. 2006;24:1663–1670. doi: 10.1097/01.hjh.0000239304.01496.83
    1. Topilsky Y, Hasin T, Raichlin E, Boilson BA, Schirger JA, Pereira NL, Edwards BS, Clavell AL, Rodeheffer RJ, Frantz RP, et al. Sirolimus as primary immunosuppression attenuates allograft vasculopathy with improved late survival and decreased cardiac events after cardiac transplantation. Circulation. 2012;125:708–720. doi: 10.1161/CIRCULATIONAHA.111.040360
    1. Raichlin E, Chandrasekaran K, Kremers WK, Frantz RP, Clavell AL, Pereira NL, Rodeheffer RJ, Daly RC, McGregor CGA, Edwards BS, et al. Sirolimus as primary immunosuppressant reduces left ventricular mass and improves diastolic function of the cardiac allograft. Transplantation. 2008;86:1395–1400. doi: 10.1097/TP.0b013e318189049a
    1. Kushwaha SS, Raichlin E, Sheinin Y, Kremers WK, Chandrasekaran K, Brunn GJ, Platt JL. Sirolimus affects cardiomyocytes to reduce left ventricular mass in heart transplant recipients. Eur Heart J. 2008;29:2742–2750. doi: 10.1093/eurheartj/ehn407
    1. Reinders MEJ, Groeneweg KE, Hendriks SH, Bank JR, Dreyer GJ, Vries APJ, Pel M, Roelofs H, Huurman VAL, Meij P, et al. Autologous bone marrow derived mesenchymal stromal cell therapy with early tacrolimus withdrawal: the randomized prospective, single‐center, open‐label TRITON study. Am J Transplant. 2021;21:3055–3065. doi: 10.1111/ajt.16528
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006
    1. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450. doi: 10.1016/0002-9149(86)90771-X
    1. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440. doi: 10.1016/j.echo.2005.10.005
    1. Baumgartner H, Hung J, Bermejo J, Chambers JB, Edvardsen T, Goldstein S, Lancellotti P, LeFevre M, Miller F Jr, Otto CM. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30:372–392. doi: 10.1016/j.echo.2017.02.009
    1. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF III, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–1360. doi: 10.1093/ehjci/jew082
    1. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler‐catheterization study. Circulation. 2000;102:1788. doi: 10.1161/01.CIR.102.15.1788
    1. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713. doi: 10.1016/j.echo.2010.05.010
    1. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143:1157–1172. doi: 10.1161/CIRCULATIONAHA.120.050686
    1. Mark AL. Cyclosporine, sympathetic activity, and hypertension. N Engl J Med. 1990;323:748–750. doi: 10.1056/NEJM199009133231109
    1. Opelz G, Döhler B; Collaborative Transplant Study . Improved long‐term outcomes after renal transplantation associated with blood pressure control. Am J Transplant. 2005;5:2725–2731. doi: 10.1111/j.1600-6143.2005.01093.x
    1. Opelz G, Wujciak T, Ritz E. Association of chronic kidney graft failure with recipient blood pressure. Collaborative Transplant Study. Kidney Int. 1998;53:217–222. doi: 10.1046/j.1523-1755.1998.00744.x
    1. Rigatto C, Foley R, Jeffery J, Negrijn C, Tribula C, Parfrey P. Electrocardiographic left ventricular hypertrophy in renal transplant recipients: prognostic value and impact of blood pressure and anemia. J Am Soc Nephrol. 2003;14:462–468. doi: 10.1097/01.ASN.0000043141.67989.39
    1. Dounousi E, Mitsis M, Naka KK, Pappas C, Lakkas L, Harisis C, Pappas K, Koutlas V, Tzalavra I, Spanos G, et al. Differences in cardiac structure assessed by echocardiography between renal transplant recipients and chronic kidney disease patients. Transplant Proc. 2014;46:3194–3198. doi: 10.1016/j.transproceed.2014.10.034
    1. Slubowska K, Lichodziejewska B, Pruszczyk P, Szmidt J, Durlik M. Left ventricular hypertrophy in renal transplant recipients in the first year after transplantation. Transplant Proc. 2014;46:2719–2723. doi: 10.1016/j.transproceed.2014.08.019
    1. Dudziak M, Debska‐Slizień A, Rutkowski B. Cardiovascular effects of successful renal transplantation: a 30‐month study on left ventricular morphology, systolic and diastolic functions. Transplant Proc. 2005;37:1039–1043. doi: 10.1016/j.transproceed.2004.12.201
    1. Ferreira SR, Moisés VA, Tavares A, Pacheco‐Silva A. Cardiovascular effects of successful renal transplantation: a 1‐year sequential study of left ventricular morphology and function, and 24‐hour blood pressure profile. Transplantation. 2002;74:1580–1587. doi: 10.1097/00007890-200212150-00016
    1. Karpe KM, Talaulikar GS, Walters GD. Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database Syst Rev. 2017;7:CD006750. doi: 10.1002/14651858.CD006750.pub2
    1. Khater NA, Selim SA, Abd El‐Baset SA, Abd El Hameed SH. Therapeutic effect of mesenchymal stem cells on experimentally induced hypertensive cardiomyopathy in adult albino rats. Ultrastruct Pathol. 2017;41:36–50. doi: 10.1080/01913123.2016.1260080
    1. Eirin A, Zhu XY, Ebrahimi B, Krier JD, Riester SM, van Wijnen AJ, Lerman A, Lerman LO. Intrarenal delivery of mesenchymal stem cells and endothelial progenitor cells attenuates hypertensive cardiomyopathy in experimental renovascular hypertension. Cell Transplant. 2015;24:2041–2053. doi: 10.3727/096368914X685582
    1. Dai W, Hale SL, Kloner RA. Role of a paracrine action of mesenchymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats. Regen Med. 2007;2:63–68. doi: 10.2217/17460751.2.1.63
    1. Healy ME, Bergin R, Mahon BP, English K. Mesenchymal stromal cells protect against caspase 3‐mediated apoptosis of CD19+ peripheral B cells through contact‐dependent upregulation of VEGF. Stem Cells Dev. 2015;24:2391–2402. doi: 10.1089/scd.2015.0089
    1. Oliveira‐Sales EB, Maquigussa E, Semedo P, Pereira LG, Ferreira VM, Câmara NO, Bergamaschi CT, Campos RR, Boim MA. Mesenchymal stem cells (MSC) prevented the progression of renovascular hypertension, improved renal function and architecture. PLoS One. 2013;8:e78464. doi: 10.1371/journal.pone.0078464
    1. Wang C, Dobrzynski E, Chao J, Chao L. Adrenomedullin gene delivery attenuates renal damage and cardiac hypertrophy in Goldblatt hypertensive rats. Am J Physiol Renal Physiol. 2001;280:F964–F971. doi: 10.1152/ajprenal.2001.280.6.F964
    1. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107:913–922. doi: 10.1161/CIRCRESAHA.110.222703
    1. Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR, Molkentin JD. Calcineurin expression, activation, and function in cardiac pressure‐overload hypertrophy. Circulation. 2000;101:2431. doi: 10.1161/01.CIR.101.20.2431
    1. Sakata Y, Masuyama T, Yamamoto K, Nishikawa N, Yamamoto H, Kondo H, Ono K, Otsu K, Kuzuya T, Miwa T, et al. Calcineurin inhibitor attenuates left ventricular hypertrophy, leading to prevention of heart failure in hypertensive rats. Circulation. 2000;102:2269. doi: 10.1161/01.CIR.102.18.2269
    1. Gelpi RJ, Gao S, Zhai P, Yan L, Hong C, Danridge LMA, Ge H, Maejima Y, Donato M, Yokota M, et al. Genetic inhibition of calcineurin induces diastolic dysfunction in mice with chronic pressure overload. Am J Physiol Heart Circ Physiol. 2009;297:H1814. doi: 10.1152/ajpheart.00449.2009
    1. Ding B, Price RL, Borg TK, Weinberg EO, Halloran PF, Lorell BH. Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin. Circ Res. 1999;84:729. doi: 10.1161/01.RES.84.6.729
    1. Anthony C, Imran M, Pouliopoulos J, Emmanuel S, Iliff JW, Moffat KJ, Ross J, Graham RM, Kotlyar E, Muthiah K, et al. Everolimus for the prevention of calcineurin inhibitor‐induced left ventricular hypertrophy after heart transplantation (RADTAC Study). JACC Heart Fail. 2021;9:301–313. doi: 10.1016/j.jchf.2021.01.007
    1. Mourer JS, Ewe SH, Mallat MJ, Ng AC, Rabelink TJ, Bax JJ, Delgado V, de Fijter JW. Late calcineurin inhibitor withdrawal prevents progressive left ventricular diastolic dysfunction in renal transplant recipients. Transplantation. 2012;94:721–728. doi: 10.1097/TP.0b013e3182603297
    1. Paoletti E, Cassottana P, Amidone M, Gherzi M, Rolla D, Cannella G. ACE inhibitors and persistent left ventricular hypertrophy after renal transplantation: a randomized clinical trial. Am J Kidney Dis. 2007;50:133–142. doi: 10.1053/j.ajkd.2007.04.013

Source: PubMed

3
Subskrybuj