Understanding the cross-talk between mediators of infertility and COVID-19

Prem Rajak, Sumedha Roy, Moumita Dutta, Sayanti Podder, Saurabh Sarkar, Abhratanu Ganguly, Moutushi Mandi, Salma Khatun, Prem Rajak, Sumedha Roy, Moumita Dutta, Sayanti Podder, Saurabh Sarkar, Abhratanu Ganguly, Moutushi Mandi, Salma Khatun

Abstract

COVID-19 is the ongoing health emergency affecting individuals of all ages around the globe. Initially, the infection was reported to affect pulmonary structures. However, recent studies have delineated the impacts of COVID-19 on the reproductive system of both men and women. Hence, the present review aims to shed light on the distribution of SARS-CoV-2 entry factors in various reproductive organs. In addition, impacts of COVID-19 mediators like disrupted renin angiotensin system, oxidative stress, cytokine storm, fever, and the mental stress on reproductive physiology have also been discussed. For the present study, various keywords were used to search literature on PubMed, ScienceDirect, and Google Scholar databases. Articles were screened for relevancy and were studied in detail for qualitative synthesis of the review. Through our literature review, we found a multitude of effects of COVID-19 mediators on reproductive systems. Studies reported expression of receptors like ACE-2, TMPRSS2, and CD147 in the testes, epididymis, prostrate, seminal vesicles, and ovarian follicles. These proteins are known to serve as major SARS-CoV-2 entry factors. The expression of lysosomal cathepsins (CTSB/CTSL) and/ neuropilin-1 (NRP-1) are also evident in the testes, epididymis, seminal vesicles, fallopian tube, cervix, and endometrium. The binding of viral spike protein with ACE-2 was found to alter the renin-angiotensin cascade, which could invite additional infertility problems. Furthermore, COVID-19 mediated cytokine storm, oxidative stress, and elevated body temperature could be detrimental to gametogenesis, steroidogenesis, and reproductive cycles in patients. Finally, social isolation, confinement, and job insecurities have fueled mental stress and frustration that might promote glucocorticoid-mediated subnormal sperm quality in men and higher risk of miscarriage in women. Hence, the influence of COVID-19 on the alteration of reproductive health and fertility is quite apparent.

Keywords: COVID-19; Cytokine storm; Oxidative stress; Renin Angiotensin System; Reproductive health.

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2021 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Schematic representation of workflow demonstrating the literature search strategy.
Fig. 2
Fig. 2
Distribution of SARS-CoV-2 entry factors in male and female reproductive organs. Abbreviations: SV: Seminal vesicle; PT: Prostate gland; EP: Epididymis; TS: Testis; OV: Ovary; EM: Endometrium; FT: Fallopian tube; UT: Uterus; CR: Cervix; ACE-2: Angiotensin Converting Enzyme 2; TMPRSS2: Type II Membrane Serine Proteases; CSTB/CSTL: Lysosomal Cathepsin B / Cathepsin L; CD147: Cluster of Differentiation 147; NRP-1: Neuropilin-1.
Fig. 3
Fig. 3
COVID-19 fuels several mediators of infertility. ANG-II/AT1R axis. The sequential proteolytic cleavage of Angiotensinogen produces Angiotensin-II (ANG-II), which acts as ligand for Angiotensin type-1 receptor (AT1R). ACE-2 regulates the amount of ANG-II in the body by converting it into Ang 1–7. Ang 1–7 then counter-regulates ANG-II signaling using Mas-receptor. The binding of the SARS-CoV-2 spike protein with the ACE-2 receptor causes ectodomain shedding and ACE-2 down-regulation. This results in massive accumulation of ANG-II and profound activation of the ANG-II/AT1R axis. The ANG-II/AT1R axis promotes ERK1/2 and NF-kB signaling involved in vasoconstriction, fibrosis, hypertrophy, and oxidative stress (OS). NOX/Nrf signaling and OS. Ang 1–7 triggers the activation of PKC and Src, which help in the assembly of NADPH Oxidase (NOX) involved in ROS production and OS. Nrf catalyzes the transcriptional activation of endogenous antioxidants to combat OS. SARS-CoV-2 reduces Ang 1–7 levels and blocks Nrf activation to promote redox dyshomeostasis, which has been linked to reproductive problems. COVID-19 and cytokine storm. Spike protein/dsRNA of the virus interacts with TLRs to recruit downstream adaptors for the massive production of proinflammatory cytokines. Moreover, pathogen associated molecular patterns (PAMP) and damage associated molecular patterns (DAMP) can directly elicit the assembly of inflammasomes that are involved in the activation of proinflammatory cytokines. Fever and mental stress are obvious outcomes of COVID-19. All of these mediators have the potential to damage the reproductive health of men and women.

References

    1. Vander Borght M., Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.
    1. Ali R.I., Ibrahim M.A. Malathion induced testicular toxicity and oxidative damage in male mice: the protective effect of curcumin. Egypt J Forensic Sci. 2018;8:70.
    1. Garolla A., Pizzol D., Bertoldo A., Menegazzo M., Barzon L., Foresta C. Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV. J Reprod Immunol. 2013;100:20–29.
    1. Greenland J.R., Michelow M.D., Wang L., London M.J. COVID-19 infection: implications for perioperative and critical care physicians. Anesthesiology. 2020;132:1346–1361.
    1. Mokhtari T., Hassani F., Ghaffari N., Ebrahimi B., Yarahmadi A., Hassanzadeh G. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol. 2020;51:613–628.
    1. Liu X., Chen Y., Tang W., Zhang L., Chen W., Yan Z., et al. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci China Life Sci. 2020;63:1006–1015.
    1. Larasati T., Noda T., Fujihara Y., Shimada K., Tobita T., Yu Z., et al. Tmprss12 is required for sperm motility and uterotubal junction migration in mice†. Biol Reprod. 2020;103:254–263.
    1. Bridwell Re, Merrill Dr, Griffith Sa, Wray J., Oliver Jj. A coronavirus disease 2019 (COVID-19) patient with bilateral orchitis. Am J Emerg Med. 2021;42(260) e3-260.e5.
    1. Gagliardi L., Bertacca C., Centenari C., Merusi I., Parolo E., Ragazzo V., et al. Orchiepididymitis in a boy with COVID-19. Pediatr Infect Dis J. 2020;39:e200–2.
    1. Holtmann N., Edimiris P., Andree M., Doehmen C., Baston-Buest D., Adams O., et al. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril. 2020;114:233–238.
    1. Li H., Xiao X., Zhang J., Zafar M.I., Wu C., Long Y., et al. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine. 2020;28
    1. Li K., Chen G., Hou H., Liao Q., Chen J., Bai H., et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod Biomed Online. 2021;42:260–267.
    1. Wong S.F., Chow K.M., Leung T.N., Ng W.F., Ng T.K., Shek C.C., et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol. 2004;191:292–297.
    1. Matar R., Alrahmani L., Monzer N., Debiane L.G., Berbari E., Fares J., et al. Clinical presentation and outcomes of pregnant women with Coronavirus Disease 2019: a Systematic Review and Meta-analysis. Clin Infect Dis. 2021;72:521–533.
    1. Dong L., Tian J., He S., Zhu C., Wang J., Liu C., et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020;323:1846–1848.
    1. Tokgoz V.Y., Kaya Y., Tekin A.B. The level of anxiety in infertile women whose ART cycles are postponed due to the COVID-19 outbreak. J Psychosom Obstet Gynaecol. 2020:1–8.
    1. Tanacan A., Yazihan N., Erol S.A., Anuk A.T., Yucel Yetiskin F.D., Biriken D., et al. The impact of COVID-19 infection on the cytokine profile of pregnant women: a prospective case-control study. Cytokine. 2021;140
    1. Qiu X., Zhang L., Tong Y., Qu Y., Wang H., Mu D. Interleukin-6 for early diagnosis of neonatal sepsis with premature rupture of the membranes: a meta-analysis. Medicine (Baltimore) 2018;97
    1. Lumbers E.R., Delforce S.J., Arthurs A.L., Pringle K.G. Causes and consequences of the dysregulated maternal renin-angiotensin system in preeclampsia. Front Endocrinol (Lausanne) 2019;10:563.
    1. Moher D., Liberati A., Tetzlaff J., PRISMA Group Altman D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–1012.
    1. Shen Q., Xiao X., Aierken A., Yue W., Wu X., Liao M., et al. The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J Cell Mol Med. 2020;24:9472–9477.
    1. Wang Z., Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV-2 infection in spermatogonia, Leydig and Sertoli cells. Cells. 2020;9:e920.
    1. Gye M.C., Kim S.T. Expression of cathepsin L in human testis under diverse infertility conditions. Arch Androl. 2004;50:187–191.
    1. Chung S.S., Zhu L.J., Mo M.Y., Silvestrini B., Lee W.M., Cheng C.Y. Evidence for cross-talk between Sertoli and germ cells using selected cathepsins as markers. J Androl. 1998;19:686–703.
    1. Jing Y., Run-Qian L., Hao-Ran W., Hao-Ran C., Ya-Bin L., Yang G., et al. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod. 2020;26:367–373.
    1. Henarejos-Castillo I., Sebastian-Leon P., Devesa-Peiro A., Pellicer A., Diaz-Gimeno P. SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle. Fertil Steril. 2020;114:223–232.
    1. Reis F.M., Bouissou D.R., Pereira V.M., Camargos A.F., dos Reis A.M., Santos R.A. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil Steril. 2011;95:176–181.
    1. Pereira V.M., Reis F.M., Santos R.A., Cassali G.D., Santos S.H., Honorato-Sampaio K., et al. Gonadotropin stimulation increases the expression of angiotensin-(1--7) and MAS receptor in the rat ovary. Reprod Sci. 2009;16:1165–1174.
    1. Smedts A.M., Lele S.M., Modesitt S.C., Curry T.E. Expression of an extracellular matrix metalloproteinase inducer (basigin) in the human ovary and ovarian endometriosis. Fertil Steril. 2006;86:535–542.
    1. Robker R.L., Russell D.L., Espey L.L., Lydon J.P., O’Malley B.W., Richards J.S. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci USA. 2000;97:4689–4694.
    1. Brannstrom M., Zackrisson U., Hagstrom H.G., Josefsson B., Hellberg P., Granberg S., et al. Preovulatory changes of blood flow in different regions of the human follicle. Fertil Steril. 1998;69:435–442.
    1. Unger T., Li J. The role of the renin–angiotensin-aldosterone system in heart failure. J Renin Angiotensin Aldosterone Syst. 2004;5(Suppl. 1):S7–10.
    1. Bader M., Ganten D. Update on tissue renin-angiotensin systems. J Mol Med. 2008;86:615–621.
    1. Colli L.G., Belardin L.B., Echem C., Akamine E.H., Antoniassi M.P., Andretta R.R., et al. Systemic arterial hypertension leads to decreased semen quality and alterations in the testicular microcirculation in rats. Sci Rep. 2019;9:11047.
    1. Khanum A., Dufau M.L. Angiotensin II receptors and inhibitory actions in Leydig cells. J Biol Chem. 1988;263:5070–5074.
    1. Uemura H. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther. 2003;2:1139–1147.
    1. Piastowska-Ciesielska A.W., Płuciennik E., Wójcik-Krowiranda K., Bieńkiewicz A., Bednarek A., Ochędalski T. Analysis of the expression of angiotensin II type 1 receptor and VEGF in endometrial adenocarcinoma with different clinicopathological characteristics. Tumour Biol. 2012;33:767–774.
    1. Zhang Q., Yu S., Lam M.M.T., Poon T.C.W., Sun L., Jiao Y., et al. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res. 2019;38:116.
    1. Leung P.S., Tsai S.J., Wallukat G., Leung T.N., Lau T.K. The upregulation of angiotensin II receptor AT(1) in human preeclamptic placenta. Mol Cell Endocrinol. 2001;2001(184):95–102.
    1. Shan T., Shang W., Zhang L., Zhao C., Chen W., Zhang Y., et al. Effect of angiotensin-(1-7) and angiotensin II on the proliferation and activation of human endometrial stromal cells in vitro. Int J Clin Exp Pathol. 2015;8:8948–8957.
    1. Alenina N., Xu P., Rentzsch B., Patkin E.L., Bader M. Genetically altered animal models for Mas and angiotensin-(1-7) Exp Physiol. 2008;93:528–537.
    1. Costa A.P., Fagundes-Moura C.R., Pereira V.M., Silva L.F., Vieira M.A., Santos R.A. Angiotensin-(1-7): a novel peptide in the ovary. Endocrinology. 2003;144:1942–1948.
    1. Honorato-Sampaio K., Pereira V.M., Santos R.A., Reis A.M. Evidence that angiotensin-(1–7) is an intermediate of gonadotrophin-induced oocyte maturation in the rat preovulatory follicle. Exp Physiol. 2012;97:642–650.
    1. Jia H.P., Look D.C., Tan P., Shi L., Hickey M., Gakhar L., et al. Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol. 2009;297:L84–96.
    1. Stoddart C.A., Geleziunas R., Ferrell S., Linquist-Stepps V., Moreno M.E., Bare C., et al. Human immunodeficiency virus type 1 Nef-mediated downregulation of CD4 correlates with Nef enhancement of viral pathogenesis. J Virol. 2003;77:2124–2133.
    1. Fujita Y., Mihara T., Okazaki T., Shitanaka M., Kushino R., Ikeda C., et al. Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod. 2011;26:2799–2806.
    1. Klein B., Haggeney T., Fietz D., Indumathy S., Loveland K.L., Hedger M., et al. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia. Hum Reprod. 2016;31:2192–2202.
    1. Alsaimary I.E.A. Evaluation of serum levels of pro-inflammatory cytokines (interleukins 2, 6, 8) in fertile and infertile men. Donnish J Microbiol Biotechnol Res. 2014;1:23–34.
    1. Havrylyuk A., Chopyak V., Boyko Y., Kril I., Kurpisz M. Cytokines in the blood and semen of infertile patients. Cent Eur J Immunol. 2015;3:337–344.
    1. Zhang H., Yin Y., Wang G., Liu Z., Liu L., Sun F. Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep. 2014;4:4260.
    1. Nicholson A., Rait G., Murray-Thomas T., Hughes G., Mercer C.H., Cassell J. Management of epididymo-orchitis in primary care: results from a large UK primary care database. Br J Gen Pract. 2010;60:e407–22.
    1. Meineke V., Frungieri M.B., Jessberger B., Vogt H., Mayerhofer A. Human testicular mast cells contain tryptase: increased mast cell number and altered distribution in the testes of infertile men. Fertil Steril. 2000;74:239–244.
    1. Duan Y.G., Yu CF Novak N., Bieber T., Zhu C.H., Schuppe H.C., et al. Immunodeviation towards a Th17 immune response associated with testicular damage in azoospermic men. Int J Androl. 2011;34:e536–45.
    1. Lotti F., Corona G., Mondaini N., Maseroli E., Rossi M., Filimberti E., et al. Seminal, clinical and colour-Doppler ultrasound correlations of prostatitis-like symptoms in males of infertile couples. Andrology. 2014;2:30–41.
    1. Hong C.Y., Park J.H., Ahn R.S., Im S.Y., Choi H.S., Soh J., et al. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol. 2004;24:2593–2604.
    1. Sadasivam M., Ramatchandirin B., Balakrishnan S., Prahalathan C. TNF-mediated suppression of Leydig cell steroidogenesis involves DAX-1. Inflamm Res. 2015;64:549–556.
    1. Qian L., Shi Q., Gu Y., Song J., Zhou M., Hua M. The relationship between IL-17 and male infertility: semen analysis. African J Microbiol Res. 2012;6:5672–5677.
    1. Matalliotakis I.M., Cakmak H., Fragouli Y., Kourtis A., Arici A., Huszar G. Increased IL-18 levels in seminal plasma of infertile men with genital tract infections. Am J Reprod Immunol. 2006;55:428–433.
    1. Schuppe H.C., Bergmann M. Springer; London: 2013. Inflammatory conditions of the testis; pp. 113–122.
    1. Oh Y.S., Jo N.H., Park J.K., Gye M.C. Changes in inflammatory cytokines accompany deregulation of Claudin-11, resulting in inter-Sertoli tight junctions in varicocele rat testes. J Urol. 2016;196:1303–1312.
    1. Białas M., Fiszer D., Rozwadowska N., Kosicki W., Jedrzejczak P., Kurpisz M. The role of IL-6, IL-10, TNF-alpha and its receptors TNFR1 and TNFR2 in the local regulatory system of normal and impaired human spermatogenesis. Am J Reprod Immunol. 2009;62:51–59.
    1. Vital Reyes V.S., Téllez Velasco S., Hinojosa Cruz J.C. Ortiz Romero Mde J, Chavarría Olarte ME, Reyes Fuentes a. Serum levels of IL-1beta, IL-6 and TNF-alpha in infertile patients with ovarian dysfunction. Ginecol Obstet Mex. 2005;73:604–610.
    1. Reid J.G. The carriage of pro-inflammatory cytokine gene polymorphisms in recurrent pregnancy loss. Am J Reprod. Immunol. 2001;45:35–40.
    1. Mahdi B.M. Role of some cytokines on reproduction. Middle East Fertil Soc J. 2011;16:220–223.
    1. Clark D.A., Chaouat G., Arck P.C., Mittruecker H.W., Levy G.A. Cytokine-dependent abortion in CBA DBA/2 mice is mediated by the procoagulant fgl2 prothrombinase. J Immunol. 1998;15:545–559.
    1. Kim E.S., Kim M.S., Moon A. TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol. 2004;25:1375–1382.
    1. Jokimaa V., Oksjoki S., Kujari H., Vuorio E., Anttila L. Altered expression of genes involved in the production and degradation of endometrial extracellular matrix in patients with unexplained infertility and recurrent miscarriages. Mol Hum Reprod. 2002;8:1111–1116.
    1. Banerjee P., Jana S.K., Pasricha P., Ghosh S., Chakravarty B., Chaudhury K. Proinflammatory cytokines induced altered expression of cyclooxygenase-2 gene results in unreceptive endometrium in women with idiopathic recurrent spontaneous miscarriage. Fertil Steril. 2013;99 179-87.e2.
    1. Hadinedoushan H., Mirahmadian M., Aflatounian A. Increased natural killer cell cytotoxicity and IL-2 production in recurrent spontaneous abortion. Am J Reprod Immunol. 2007;58:409–414.
    1. Heyborne K.D., McGregor J.A., Henry G., Witkin S.S., Abrams J.S. Interleukin-10 in amniotic fluid at midtrimester: immune activation and suppression in relation to fetal growth. Am J Obstet Gynecol. 1994;171:55–59.
    1. Piccinni M.P., Beloni L., Livi C., Maggi E., Scarselli G., Romagnani S. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med. 1998;4:1020–1024.
    1. Gupta S., Goldberg J.M., Aziz N., Goldberg E., Krajcir N., Agarwal A. Pathogenic mechanisms in endometriosis-associated infertility. Fertil Steril. 2008;90:247–257.
    1. Daniels S.E., Talwalker S., Torri S., Snabes M.C., Recker D.P., Verburg K.M. Valdecoxib, a cyclooxygenase-2-specific inhibitor, is effective in treating primary dysmenorrhea. Obstet Gynecol. 2002;100:350–358.
    1. Jabbour H.N., Milne S.A., Williams A.R.W., Anderson R.A., Boddy S.C. Expression of COX-2 and PGE synthase and synthesis of PGE2 in endometrial adenocarcinoma a possible autocrine/paracrine regulation of neoplastic cell function via EP2/EP4 receptors. Br J Cancer. 2001;85:1023–1031.
    1. Molina-Holgado E., Ortiz S., Molina-Holgado F., Guaza C. Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. Br J Pharmacol. 2000;131:152–159.
    1. Smith S.K., Abel M.H., Kelly R.W., Baird D.T. A role for prostacyclin (PGi2) in excessive menstrual bleeding. Lancet. 1981;1:522–524.
    1. Makarainen L., Ylikorkala O. Primary and myoma-associated menorrhagia role of prostaglandins and effects of ibuprofen. Br J Obstet Gynaecol. 1986;93:974–978.
    1. Dikalov S.I., Nazarewicz R.R. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal. 2013;19:1085–1094.
    1. Azimi I., Petersen R.M., Thompson E.W., Roberts-Thomson S.J., Monteith G.R. Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expression, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Sci Rep. 2017;7:15140.
    1. Lippi G., Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019. Hematol Transfus Cell Ther. 2020;42:116–117.
    1. Hosakote Y.M., Jantzi P.D., Esham D.L., Spratt H., Kurosky A., Casola A., et al. Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med. 2011;183:1550–1560.
    1. Yang D., Elner S.G., Bian Z.M., Till G.O., Petty H.R., Elner V.M. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res. 2007;85:462–472.
    1. van den Brand J.M., Haagmans B.L., van Riel D., Osterhaus A.D., Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 2014;151:83–112.
    1. Smith J.T., Willey N.J., Hancock J.T. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol Lett. 2012;8:594–597.
    1. Iwasaki A., Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57:409–416.
    1. Chen S.J., Allam J.P., Duan Y.G., Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288:191–199.
    1. Will M.A., Swain J., Fode M., Sonksen J., Christman G.M., Ohl D. The great debate: varicocele treatment and impact on fertility. Fertil Steril. 2011;95:841–852.
    1. Zribi N., Chakroun N.F., Elleuch H., Abdallah F.B., Ben Hamida A.S., Gargouri J., et al. Sperm DNA fragmentation and oxidation are independent of malondialdheyde. Reprod Biol Endocrinol. 2011;9:47.
    1. Agarwal A., Said T.M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9:331–345.
    1. Koppers A.J., Mitchell L.A., Wang P., Lin M., Aitken R.J. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J. 2011;436:687–698.
    1. Krishnamoorthy G., Selvakumar K., Venkataraman P., Elumalai P., Arunakaran J. Lycopene supplementation prevents reactive oxygen species mediated apoptosis in Sertoli cells of adult albino rats exposed to polychlorinated biphenyls. Interdiscip Toxicol. 2013;6:83–92.
    1. Wang Y., Chen F., Ye L., Zirkin B., Chen H. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction. 2017;154:R111–22.
    1. Shi Z., Feng Y., Wang J., Zhang H., Ding L., Dai J. Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells. Toxicol Sci. 2010;114:285–294.
    1. Sai L., Li X., Liu Y., Guo Q., Xie L., Yu G., et al. Effects of chlorpyrifos on reproductive toxicology of male rats. Environ Toxicol. 2014;29:1083–1088.
    1. Wu P.Y., Scarlata E., O’Flaherty C. Long-term adverse effects of oxidative stress on rat epididymis and spermatozoa. Antioxidants (Basel) 2020;9:170.
    1. Augoulea A., Mastorakos G., Lambrinoudaki I., Christodoulakos G., Creatsas G. The role of the oxidative-stress in the endometriosis-related infertility. Gynecol Endocrinol. 2009;25:75–81.
    1. White M., Cohen J., Hummel C., Burky R., Cruz A., Farias-Eisner R. The role of oxidative stress in ovarian cancer: implications for the treatment of patients. Cancer. 2014:41–50.
    1. Guérin P., El Mouatassim S., Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175–189.
    1. Sulaiman M.A.H., Al-Farsi Y.M., Al-Khaduri M.M., Saleh J., Waly M.I. Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int J Womens Health. 2018;10:763–771.
    1. González F., Rote N.S., Minium J., Kirwan J.P. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:336–340.
    1. Disabled World. Rev . 2020. Human body temperature: COVID-19 : fever : normal : low.
    1. Tharakan S., Nomoto K., Miyashita S., Ishikawa K. Body temperature correlates with mortality in COVID-19 patients. Crit Care. 2020;24:298.
    1. Hutchison J.S., Ward R.E., Lacroix J., Hébert P.C., Barnes M.A., Bohn D.J., et al. Hypothermia pediatric head injury trial investigators and the canadian critical care trials group. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358:2447–2456.
    1. Bedford J.M. Effects of elevated temperature on the epididymis and testis: experimental studies. Adv Exp Med Biol. 1991;286:19–32.
    1. Jung A., Schuppe H.C., Schill W.B. Fieber als Ursache einer temporären Fertilitätseinschränkung des Mannes [Fever as etiology of temporary infertility in the man] Hautarzt. 2001;52:1090–1093.
    1. Koentjoro-Soehadi L. Azoospermia caused by typhoid fever. A case report. Andrologia. 1982;14 31-2,34.
    1. Andrade-Rocha F.T. Temporary impairment of semen quality following recent acute fever. Ann Clin Lab Sci. 2013;43:94–97.
    1. Sergerie M., Mieusset R., Croute F., Daudin M., Bujan L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil Steril. 2007;88 970.e1-7.
    1. Yin Y., Hawkins K.L., DeWolf W.C., Morgentaler A. Heat stress causes testicular germ cell apoptosis in adult mice. J Androl. 1997;18:159–165.
    1. Aktas C., Kanter M. A morphological study on Leydig cells of scrotal hyperthermia applied rats in short-term. J Mol Histol. 2009;40:31–39.
    1. Kulibin A.Y., Malolina E.A. Sertoli cells cultured under high-temperature and hypoxic conditions. Cell Tiss Biol. 2014;8:97–106.
    1. Wang J.Z., Sui H.S., Miao D.Q., Liu N., Zhou P., Ge L., et al. Effects of heat stress during in vitro maturation on cytoplasmic versus nuclear components of mouse oocytes. Reproduction. 2009;137:181–189.
    1. Sirotkin A.V., Kacaniova M. The effect of high temperature on swine ovarian function in vitro. Vet Med. 2010;55:377–382.
    1. Bridges P.J., Brusie M.A., Fortune J.E. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest Anim Endocrinol. 2005;29:508–522.
    1. Hafez E.S.E. Effects of high temperature on reproduction. Int J Biometeorol. 1964;7:223–230.
    1. Wise M.E., Armstrong D.V., Huber J.T., Hunter R., Wiersma F. Hormonal alterations in the lactating dairy cow in response to thermal stress. J Dairy Sci. 1988;71:2480–2485.
    1. Shimizu T., Ohshima I., Ozawa M., Takahashi S., Tajima A., Shiota M., et al. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction. 2005;129:463–472.
    1. Roth Z., Aroyo A., Yavin S., Arav A. The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice. Theriogenology. 2008;70:887–897.
    1. Xiang Y.T., Yang Y., Li W., Zhang L., Zhang Q., Cheung T., et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry. 2020;7:228–229.
    1. Serafini G., Parmigiani B., Amerio A., Aguglia A., Sher L., Amore M. The psychological impact of COVID-19 on the mental health in the general population. QJM. 2020;113:531–537.
    1. Cacioppo J.T., Berntson G.G., Malarkey W.B., Kiecolt-Glaser J.K., Sheridan J.F., Poehlmann K.M., et al. Autonomic, neuroendocrine, and immune responses to psychological stress: the reactivity hypothesis. Ann N Y Acad Sci. 1998;840:664–673.
    1. Xiao Y.C., Huang Y.D., Hardy D.O., Li X.K., Ge R.S. Glucocorticoid suppresses steroidogenesis in rat progenitor Leydig cells. J Androl. 2010;31:365–371.
    1. Kotitschke A., Sadie-Van Gijsen H., Avenant C., Fernandes S., Hapgood J.P. Genomic and nongenomic cross talk between the gonadotropin-releasing hormone receptor and glucocorticoid receptor signaling pathways. Mol Endocrinol. 2009;23:1726–1745.
    1. Smith L.B., Walker W.H. The regulation of spermatogenesis by androgens. Semin Cell Dev Biol. 2014;30:2–13.
    1. Jurewicz J., Hanke W., Sobala W., Merecz D., Radwan M. The effect of stress on the semen quality [Polish] Med Pr. 2010;61:607–613.
    1. Gollenberg A.L., Liu F., Brazil C., Drobnis E.Z., Guzick D., Overstreet J.W., et al. Semen quality in fertile men in relation to psychosocial stress. Fertil Steril. 2010;93:1104–1111.
    1. Eskiocak S., Gozen A.S., Taskiran A., Kilic A.S., Eskiocak M., Gulen S. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality. Braz J Med Biol Res. 2006;39:581–588.
    1. Althof S.E., Needle R.B. Psychological factors associated with male sexual dysfunction: screening and treatment for the urologist. Urol Clin North Am. 2011;38:141–146.
    1. Genazzani A.D., Ricchieri F., Lanzoni C., Strucchi C., Jasonni V.M. Diagnostic and therapeutic approach to hypothalamic amenorrhea. Ann N Y Acad Sci. 2006;1092:103–113.
    1. Barsom S.H., Mansfield P.K., Koch P.B., Gierach G., West S.G. Association between psychological stress and menstrual cycle characteristics in perimenopausal women. Womens Health Issues. 2004;14:235–241.
    1. Allsworth J.E., Zierler S., Lapane K.L., Krieger N., Hogan J.W., Harlow B.L. Longitudinal study of the inception of perimenopause in relation to lifetime history of sexual or physical violence. J Epidemiol Community Health. 2004;58:938–943.
    1. Nepomnaschy P.A., Sheiner E., Mastorakos G., Arck P.C. Stress, immune function, and women’s reproduction. Ann N Y Acad Sci. 2007;1113:350–364.
    1. Pourali L., Vatanchi A.M., Hamidi A. A case of Cushing’s syndrome in pregnancy. Iran J Med Sci. 2017;42:607–610.
    1. Nepomnaschy P.A., Welch K.B., McConnell D.S., Low B.S., Strassmann B.I., England B.G. Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci U S A. 2006;103:3938–3942.
    1. Klonoff-Cohen H., Chu E., Natarajan L., Sieber W. A prospective study of stress among women undergoing in vitro fertilization or gamete intrafallopian transfer. Fertil Steril. 2001;76:675–687.
    1. Carrell D.T., Wilcox A.L., Lowy L., Peterson C.M., Jones K.P., Erickson L., et al. Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstet Gynecol. 2003;101:1229–1235.
    1. Saleh R.A., Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–752.
    1. Tamura H., Takasaki A., Miwa I., Taniguchi K., Maekawa R., Asada H., et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44:280–287.
    1. Harrity C., Shkrobot L., Walsh D., Marron K. ART implantation failure and miscarriage in patients with elevated intracellular cytokine ratios: response to immune support therapy. Fertil Res Pract. 2018;4:7.
    1. Winger E.E., Reed J.L., Ashoush S., El-Toukhy T., Ahuja S., Taranissi M. Degree of TNF-α/IL-10 cytokine elevation correlates with IVF success rates in women undergoing treatment with Adalimumab (Humira) and IVIG. Am J Reprod Immunol. 2011;65:610–618.
    1. Inagaki N., Stern C., McBain J., Lopata A., Kornman L., Wilkinson D. Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer. Hum Reprod. 2003;18:608–615.
    1. Nikolaeva M.A., Babayan A.A., Stepanova E.O., Smolnikova V.Y., Kalinina E.A., Fernández N., et al. The relationship of seminal transforming growth factor-β1 and interleukin-18 with reproductive success in women exposed to seminal plasma during IVF/ICSI treatment. J Reprod Immunol. 2016;117:45–51.
    1. Nikolaeva M., Arefieva A., Babayan A., Chagovets V., Kitsilovskaya N., Starodubtseva N., et al. Immunoendocrine markers of stress in seminal plasma at IVF/ICSI failure: a preliminary study. Reprod Sci. 2021;28:144–158.
    1. Cikos S., Rehák P., Czikková S., Veselá J., Koppel J. Expression of adrenergic receptors in mouse preimplantation embryos and ovulated oocytes. Reproduction. 2007;133:1139–1147.
    1. Nepomnaschy P.A., Welch K.B., McConnell D.S., Low B.S., Strassmann B.I., England B.G. Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci U S A. 2006;103:3938–3942.
    1. An Y., Sun Z., Li L., Zhang Y., Ji H. Relationship between psychological stress and reproductive outcome in women undergoing in vitro fertilization treatment: psychological and neurohormonal assessment. J Assist Reprod Genet. 2013;30:35–41.
    1. Zhou F.J., Cai Y.N., Dong Y.Z. Stress increases the risk of pregnancy failure in couples undergoing IVF. Stress. 2019;22:414–420.
    1. Awwad J., Ghazeeri G., Toth T., Hannoun A., Abdallah M.A., Farra C. Fever in women may interfere with follicular development during controlled ovarian stimulation. Int J Hyperthermia. 2012;28:742–746.
    1. Sergerie M., Mieusset R., Croute F., Daudin M., Bujan L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil Steril. 2007;88 970.e1-7.
    1. Surcel M., Surcel M., Zlatescu-Marton C., Micu R., Nemeti G.I., Axente D.D., et al. The role of high follicular levels of angiotensin ii and vascular endothelial growth factor in anticipating the development of severe ovarian hyperstimulation syndrome in patients with prophylactic cabergoline therapy undergoing an in vitro fertilization procedure. Acta endocrinologica (Bucharest, Romania. 2005;2020(16):30–36.
    1. Gianzo M., Subirán N. Regulation of male fertility by the renin-angiotensin system. Int J Mol Sci. 2020;21:7943.
    1. Lamamri M., Chebbi A., Mamane J., Abbad S., Munuzzolini M., Sarfati F., et al. Priapism in a patient with coronavirus disease 2019 (COVID-19) Am J Emerg Med. 2021;39 251.e5-251.e7.
    1. Kim J., Thomsen T., Sell N., Goldsmith A.J. Abdominal and testicular pain: an atypical presentation of COVID-19. Am J Emerg Med. 2020;38(1542) e1-1542.e3.
    1. Ma X., Guan C., Chen R., Wang Y., Feng S., Wang R., et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell Mol Immunol. 2021;18(2):487–489.
    1. Yang M., Chen S., Huang B., Zhong J.M., Su H., Chen Y.J., et al. Pathological findings in the testes of COVID-19 patients: clinical implications. Eur Urol Focus. 2020;6(5):1124–1129.
    1. Alay I., Yildiz S., Kaya C., Yasar K.K., Aydin O.A., Karaosmanoglu H.K., et al. The clinical findings and outcomes of symptomatic pregnant women diagnosed with or suspected of having coronavirus disease 2019 in a tertiary pandemic hospital in Istanbul, Turkey. J Obstet Gynaecol Res. 2020 doi: 10.1111/jog.14493.
    1. Sentilhes L., De Marcillac F., Jouffrieau C., Kuhn P., Thuet V., Hansmann Y., et al. Coronavirus disease 2019 in pregnancy was associated with maternal morbidity and preterm birth. Am J Obstet Gynecol. 2020;223 914.e1-914.e15.
    1. Jaiswal N., Puri M., Agarwal K., Singh S., Yadav R., Tiwary N., et al. COVID-19 as an independent risk factor for subclinical placental dysfunction. Eur J Obstet Gynecol Reprod Biol. 2021;259:7–11.

Source: PubMed

3
Subskrybuj