Gut microbiota of healthy and malnourished children in bangladesh

Shirajum Monira, Shota Nakamura, Kazuyoshi Gotoh, Kaori Izutsu, Haruo Watanabe, Nur Haque Alam, Hubert Ph Endtz, Alejandro Cravioto, Sk Imran Ali, Takaaki Nakaya, Toshihiro Horii, Tetsuya Iida, Munirul Alam, Shirajum Monira, Shota Nakamura, Kazuyoshi Gotoh, Kaori Izutsu, Haruo Watanabe, Nur Haque Alam, Hubert Ph Endtz, Alejandro Cravioto, Sk Imran Ali, Takaaki Nakaya, Toshihiro Horii, Tetsuya Iida, Munirul Alam

Abstract

Poor health and malnutrition in preschool children are longstanding problems in Bangladesh. Gut microbiota plays a tremendous role in nutrient absorption and determining the state of health. In this study, metagenomic tool was employed to assess the gut microbiota composition of healthy and malnourished children. DNA was extracted from fecal samples of seven healthy and seven malnourished children (n = 14; age 2-3 years) were analyzed for the variable region of 16S rRNA genes by universal primer PCR followed by high-throughput 454 parallel sequencing to identify the bacterial phyla and genera. Our results reveal that the healthy children had a significantly higher number of operational taxonomic unit in their gut than that of the malnourished children (healthy vs. malnourished: 546 vs. 310). In malnourished children, bacterial population of the phyla Proteobacteria and Bacteroidetes accounted for 46 and 18%, respectively. Conversely, in healthy children, Proteobacteria and Bacteroidetes accounted for 5% and 44, respectively (p < 0.001). In malnourished children, the phylum Proteobacteria included pathogenic genera, namely Klebsiella and Escherichia, which were 174-fold and 9-fold higher, respectively, than their healthy counterpart. The predominance of potentially pathogenic Proteobacteria and minimal level of Bacteroidetes as commensal microbiota might be associated to the ill health of malnourished children in Bangladesh.

Keywords: 16S rDNA; children; gut; microbiota; nutrition.

Figures

Figure 1
Figure 1
“Rarefaction Curve” showing differences in the divergence between the gut microbiota of healthy and malnourished children. d, distance cut off value.
Figure 2
Figure 2
Relative abundance (percentage of sequences) of the dominant bacterial phyla in the gut of healthy and malnourished children. Values are expressed as mean ± SE. *Indicates significant difference (p < 0.05) and **(p < 0.001) between two groups of children. Light gray, healthy; dark gray, malnourished children.
Figure 3
Figure 3
Each individual of two groups of children (healthy, H1 ∼ H7; malnourished, M1 ∼ M7) showing relative abundance (percentage of sequences) of the dominant gut bacteria.
Figure 4
Figure 4
Venn diagram showing the distribution of genera belonging to the major phyla between healthy and malnourished children. Bacterial genera with the relative abundance of ≥0.1% were considered for comparison. A total of 39 genera are characteristic of healthy children, 23 genera common between healthy and malnourished children and 14 genera are characteristic of malnourished children.

References

    1. Ahmed T., Haque R., Shamsir Ahmed A. M., Petri W. A., Jr., Cravioto A. (2009). Use of metagenomics to understand the genetic basis of malnutrition. Nutr. Rev. 67, 201–20610.1111/j.1753-4887.2009.00241.x
    1. Andersson A. F., Lindberg M., Jakobsson H., Backhed F., Nyren P., Engstrand L. (2008). Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3, e2836.10.1371/journal.pone.0002836
    1. Ann M., O’Hara F. S. (2006). The gut flora as a forgotten organ. EMBO Rep. 6, 688–693
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G. R., Tap J., Bruls T., Batto J. M., Bertalan M., Borruel N., Casellas F., Fernandez L., Gautier L., Hansen T., Hattori M., Hayashi T., Kleerebezem M., Kurokawa K., Leclerc M., Levenez F., Manichanh C., Nielsen H. B., Nielsen T., Pons N., Poulain J., Qin J., Sicheritz-Ponten T., Tims S., Torrents D., Ugarte E., Zoetendal E. G., Wang J., Guarner F., Pedersen O., de Vos W. M., Brunak S., Doré J., MetaHIT Consortium. Antolín M., Artiguenave F., Blottiere H. M., Almeida M., Brechot C., Cara C., Chervaux C., Cultrone A., Delorme C., Denariaz G., Dervyn R., Foerstner K. U., Friss C., van de Guchte M., Guedon E., Haimet F., Huber W., van Hylckama-Vlieg J., Jamet A., Juste C., Kaci G., Knol J., Lakhdari O., Layec S., Le Roux K., Maguin E., Mérieux A., Melo Minardi R., M’rini C., Muller J., Oozeer R., Parkhill J., Renault P., Rescigno M., Sanchez N., Sunagawa S., Torrejon A., Turner K., Vandemeulebrouck G., Varela E., Winogradsky Y., Zeller G., Weissenbach J., Ehrlich S. D., Bork P. (2011). Enterotypes of the human gut microbiome. Nature 473, 174 –180.10.1038/nature09944
    1. Backhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915–192010.1126/science.1104816
    1. Bibiloni R., Mangold M., Madsen K. L., Fedorak R. N., Tannock G. W. (2006). The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J. Med. Microbiol. 55, 1141–114910.1099/jmm.0.46498-0
    1. Brandtzaeg P. (2010). Homeostatic impact of indigenous microbiota and secretory immunity. Benef. Microbes 1, 211–22710.3920/BM2010.0009
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J. B., Massart S., Collini S., Pieraccini G., Lionetti P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107, 14691–1469610.1073/pnas.1005963107
    1. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. (2005). Diversity of the human intestinal microbial flora. Science 308, 1635–163810.1126/science.1110591
    1. Frank D. N., Amand A. L., St, Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104, 13780–1378510.1073/pnas.0706625104
    1. Gupta S. S., Mohammed M. H., Ghosh T. S., Kanungo S., Nair G. B., Mande S. S. (2011). Metagenome of the gut of a malnourished child. Gut Pathog. 3, 7.10.1186/1757-4749-3-7
    1. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., Welling G. W. (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61–6710.1097/00005176-200001000-00019
    1. Johansson M. A., Sjogren Y. M., Persson J. O., Nilsson C., Sverremark-Ekstrom E. (2011). Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLoS ONE 6, e23031.10.1371/journal.pone.0023031
    1. Lay C., Rigottier-Gois L., Holmstrom K., Rajilic M., Vaughan E. E., de Vos W. M., Collins M. D., Thiel R., Namsolleck P., Blaut M., Doré J. (2005). Colonic microbiota signatures across five northern European countries. Appl. Environ. Microbiol. 71, 4153–415510.1128/AEM.71.7.4153-4155.2005
    1. Ley R. E., Backhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 102, 11070–1107510.1073/pnas.0504978102
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–102310.1038/4441022a
    1. Lindsay B., Ramamurthy T., Sen Gupta S., Takeda Y., Rajendran K., Nair G. B., Stine O. C. (2011). Diarrheagenic pathogens in polymicrobial infections. Emerging Infect. Dis. 17, 606–611
    1. Magne F., Abely M., Boyer F., Morville P., Pochart P., Suau A. (2006). Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol. Ecol. 57, 128–13810.1111/j.1574-6941.2006.00097.x
    1. Mariat D., Firmesse O., Levenez F., Guimaraes V., Sokol H., Dore J., Corthier G., Furet J. P. (2009). The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9, 123.10.1186/1471-2180-9-123
    1. Marteau P., Lepage P., Mangin I., Suau A., Dore J., Pochart P., Seksik P. (2004). Review article: gut flora and inflammatory bowel disease. Aliment. Pharmacol. Ther. 20(Suppl. 4), 18–2310.1111/j.1365-2036.2004.02062.x
    1. Monira S., Alam N. H., Suau A., Magne F., Nair G. B., Karmakar P. C., Rahman M., Pochart P., Desjeux J. F. (2009). Time course of bacterial diversity in stool samples of malnourished children with cholera receiving treatment. J. Pediatr. Gastroenterol. Nutr. 48, 571–57810.1097/MPG.0b013e3181831867
    1. Monira S., Hoq M. M., Chowdhury A. K., Suau A., Magne F., Endtz H. P., Alam M., Rahman M., Pochart P., Desjeux J. F., Alam N. H. (2010). Short-chain fatty acids and commensal microbiota in the faeces of severely malnourished children with cholera rehydrated with three different carbohydrates. Eur. J. Clin. Nutr. 64, 1116–112410.1038/ejcn.2010.123
    1. Nakamura S., Maeda N., Miron I. M., Yoh M., Izutsu K., Kataoka C., Honda T., Yasunaga T., Nakaya T., Kawai J., Hayashizaki Y., Horii T., Iida T. (2008). Metagenomic diagnosis of bacterial infections. Emerging Infect. Dis. 14, 1784–178610.3201/eid1411.080589
    1. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–719610.1093/nar/gkm864
    1. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D. R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J. M., Hansen T., Le Paslier D., Linneberg A., Nielsen H. B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., MetaHIT Consortium. Bork P., Ehrlich S. D., Wang J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–6510.1038/nature08821
    1. Ramakrishna B. S. (2007). The normal bacterial flora of the human intestine and its regulation. J. Clin. Gastroenterol. 41, S2–S610.1097/MCG.0b013e31802fba68
    1. Rousseau C., Levenez F., Fouqueray C., Dore J., Collignon A., Lepage P. (2011). Clostridium difficile colonization in early infancy is accompanied by changes in intestinal microbiota composition. J. Clin. Microbiol. 49, 858–86510.1128/JCM.01507-10
    1. Sun Y., Cai Y., Liu L., Yu F., Farrell M. L., McKendree W., Farmerie W. (2009). ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res. 37, e76.10.1093/nar/gkp493
    1. Tap J., Mondot S., Levenez F., Pelletier E., Caron C., Furet J. P., Ugarte E., Muñoz-Tamayo R., Paslier D. L., Nalin R., Dore J., Leclerc M. (2009). Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11, 2574–258410.1111/j.1462-2920.2009.01982.x
    1. Thompson J. R., Marcelino L. A., Polz M. F. (2002). Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by “reconditioning PCR.” Nucleic Acids Res. 30, 2083–2088
    1. Turnbaugh P. J., Ridaura V. K., Faith J. J., Rey F. E., Knight R., Gordon J. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14.10.1126/scitranslmed.3000322
    1. WHO (1983). Measuring Change in Nutritional Status. Guidelines for Assessing the Nutritional Impact of Supplementary Feeding Programmes for Vulnerable Groups. Geneva: World Health Organization
    1. Xu J., Bjursell M. K., Himrod J., Deng S., Carmichael L. K., Chiang H. C., Hooper L. V., Gordon J. I. (2003). A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–207610.1126/science.1080029

Source: PubMed

3
Subskrybuj