The dawn of physiological closed-loop ventilation-a review

Philip von Platen, Anake Pomprapa, Burkhard Lachmann, Steffen Leonhardt, Philip von Platen, Anake Pomprapa, Burkhard Lachmann, Steffen Leonhardt

Abstract

The level of automation in mechanical ventilation has been steadily increasing over the last few decades. There has recently been renewed interest in physiological closed-loop control of ventilation. The development of these systems has followed a similar path to that of manual clinical ventilation, starting with ensuring optimal gas exchange and shifting to the prevention of ventilator-induced lung injury. Systems currently aim to encompass both aspects, and early commercial systems are appearing. These developments remain unknown to many clinicians and, hence, limit their adoption into the clinical environment. This review shows the evolution of the physiological closed-loop control of mechanical ventilation.

Keywords: Closed-loop ventilation; Patient-in-the-loop; Physiological control.

Conflict of interest statement

The authors have cooperated and continued to work on closed-loop ventilation projects (SOLVe, AutoARDSNet, Oxyvent) funded by the Federal Ministry of Education and Research (BMBF, Germany).

Figures

Fig. 1
Fig. 1
Classical clinician-in-the-loop system. The physiological measurement and ventilator settings shown are only exemplary. In the clinical environment, further derived measurement variables are also used. Clinician refers to the physicians, respiratory therapists, or nurses
Fig. 2
Fig. 2
Physiological closed-loop control for mechanical ventilation system
Fig. 3
Fig. 3
Setpoint tracking and disturbance rejection shown for an illustrative example. A good controller ensures that the measured etCO2 closely follows the setpoint. At t1, a setpoint change (change in target) requires an increase in minute volume (bottom graph). At t2, a sudden increase in CO2 (disturbance) requires another increase in MV
Fig. 4
Fig. 4
Control topology for a fully automated physiological closed-loop ventilation. Measurement signals fed back to the controller are categorized according to the control target. The list of physiological measurements is not complete but shows only examples taken from the presented PCLC systems

References

    1. Walter M, Leonhardt S. 2007 Mediterranean Conference on Control & Automation. Athens: IEEE; 2007. Control applications in artificial ventilation.
    1. IEC 60601-1-10:2007 - Medical Electrical Equipment – Part 1-10: General requirements for basic safety and essential performance – collateral standard: requirements for the development of physiologic closed-loop controllers. .
    1. Parvinian B, Scully C, Wiyor H, Kumar A, Weininger S. Regulatory considerations for physiological closed-loop controlled medical devices used for automated critical care: food and drug administration workshop discussion topics. Anesth Analg. 2018;126:1916–25. doi: 10.1213/ANE.0000000000002329.
    1. Angus DC, Kelley MA, Schmitz RJ, White A, Popovich Jr J, for the Committee on Manpower for Pulmonary, et al. Current and projected workforce requirements for care of the critically ill and patients with pulmonary disease can we meet the requirements of an aging population?JAMA. 284; 2000:2762.
    1. Vawdrey DK, Gardner RM, Evans RS, Orme JF, Clemmer TP, Greenway L, et al. Assessing data quality in manual entry of ventilator settings. J Am Med Inform Assoc. 2007;14:295–303. doi: 10.1197/jamia.M2219.
    1. Arnal JM, Garnero A, Novotni D, Corno G, Donati SY, Demory D, et al. Closed loop ventilation mode in intensive care unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes. Minerva Anestesiol. 2018;84:58–67.
    1. Cox CE, Carson SS, Govert JA, Chelluri L, Sanders GD. An economic evaluation of prolonged mechanical ventilation. Crit Care Med. 2007;35:1918–27. doi: 10.1097/01.CCM.0000275391.35834.10.
    1. Zilberberg MD, de Wit M, Pirone JR, Shorr AF. Growth in adult prolonged acute mechanical ventilation: implications for healthcare delivery. Crit Care Med. 2008;36:1451–5. doi: 10.1097/CCM.0b013e3181691a49.
    1. Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92:1382–400. doi: 10.1016/j.mayocp.2017.05.004.
    1. Brunner J. Principles and history of closed-loop controlled ventilation. Respir Care Clin N Am. 2001;7:341–62. doi: 10.1016/S1078-5337(05)70040-X.
    1. Lellouche F, Brochard L. Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare) Best Pract Res Clin Anaesthesiol. 2009;23:81–93. doi: 10.1016/j.bpa.2008.08.001.
    1. Wysocki M, Jouvet P, Jaber S. Closed loop mechanical ventilation. J Clin Monit Comput. 2014;28:49–56. doi: 10.1007/s10877-013-9465-2.
    1. Branson RD. Automation of mechanical ventilation. Crit Care Clin. 2018;34:383–94. doi: 10.1016/j.ccc.2018.03.012.
    1. Chatburn RL, El-Khatib M, Mireles-Cabodevila E. A taxonomy for mechanical ventilation: 10 fundamental maxims. Respir Care. 2014;59:1747–63. doi: 10.4187/respcare.03057.
    1. Saxton GA, Myers G. A servomechanism for automatic regulation of pulmonary ventilation. J Appl Physiol. 1957;11:326–8. doi: 10.1152/jappl.1957.11.2.326.
    1. Frumin MJ. Clinical use of a physiological respirator producing N2O amnesia-analgesia. Anesthes. 1957;18:290–9. doi: 10.1097/00000542-195703000-00016.
    1. Takahara K, Wakamatsu H. Control of artificial respiration by adaptive pole-placement method. Syst Comput Jpn. 1994;25:72–82. doi: 10.1002/scj.4690250807.
    1. Sano A, Kikucki M. Adaptive control of arterial oxygen pressure of newborn infants under incubator oxygen treatments. IEE Proc D Control Theory Appl. 1985;132:205. doi: 10.1049/ip-d.1985.0036.
    1. Yu C, He WG, So JM, Roy R, Kaufman H, Newell JC. Improvement in arteral oxygen control using multiple-model adaptive control procedures. IEEE Trans Biomed Eng. 1987;BME-34:567–74. doi: 10.1109/TBME.1987.326067.
    1. Mitamura Y, Mikami T, Sugawara H, Yoshimoto C. An optimally controlled respirator. IEEE Trans Biomed Eng. 1971;BME-18:330–8. doi: 10.1109/TBME.1971.4502864.
    1. Fernando T, Cade J, Packer J. Automatic control of arterial carbon dioxide tension in mechanically ventilated patients. IEEE Trans Inform Technol Biomed. 2002;6:269–76. doi: 10.1109/TITB.2002.806084.
    1. Martinoni EP, Pfister CA, Stadler KS, Schumacher PM, Leibundgut D, Bouillon T, et al. Model-based control of mechanical ventilation: design and clinical validation. Br J Anaesth. 2004;92:800–7. doi: 10.1093/bja/aeh145.
    1. Schäublin J, Derighetti M, Feigenwinter P, Petersen-Felix S, Zbinden AM. Fuzzy logic control of mechanical ventilation during anaesthesia. Br J Anaesth. 1996;77:636–41. doi: 10.1093/bja/77.5.636.
    1. Leonhardt S, Böhm S. Control methods for artificial ventilation of ARDS patients. In: European Medical & Biological Engineering Conference. Vienna: 1999. p. 2. .
    1. Frumin MJ, Bergman NA, Holaday DA. Carbon dioxide and oxygen blood levels with a carbon dioxide controlled artificial respirator. Anesthesiology. 1959;20:313–20. doi: 10.1097/00000542-195905000-00009.
    1. Coles JR, Brown WA, Lampard DG. Computer control of respiration and anaesthesia. Med Biol Eng. 1973;11:262–7. doi: 10.1007/BF02475535.
    1. Smith DM, Mercer RR, Eldridge FL. Servo control of end-tidal CO2 in paralyzed animals. J Appl Physiol. 1978;45:133–6. doi: 10.1152/jappl.1978.45.1.133.
    1. Schulz V, Ulmer HV, Erdmann W, Kunke S, Schnabel KH. Ein Verfahren zur paCO2-geregelten automatischen Ventilation. Pneumologie. 1974;150:319–25.
    1. Coon RL, Zuperku EJ, Kampine JP. Systemic arterial blood pH Servocontrol of mechanical ventilation. Anesthesiology. 1978;49:201–4. doi: 10.1097/00000542-197809000-00010.
    1. Ohlson KB, Westenskow DR, Jordan WS. A microprocessor based feedback controller for mechanical ventilation. Ann Biomed Eng. 1982;10:35–48. doi: 10.1007/BF02584213.
    1. Holloman GH, Milhorn HT, Coleman TG. A sampled-data regulator for maintaining a constant alveolar CO2. J Appl Physiol. 1968;25:463–8. doi: 10.1152/jappl.1968.25.4.463.
    1. East TD, Westenskow DR, Pace NL, Nelson LD. A microcomputer-based differential lung ventilation system. IEEE Trans Biomed Eng. 1982;BME-29:736–740. doi: 10.1109/TBME.1982.325005.
    1. Bhansali PV, Rowley BA. A microcomputer-controlled servo ventilator. J Clin Eng. 1984;9:47. doi: 10.1097/00004669-198401000-00009.
    1. Chapman FW, Newell JC, Roy RJ. A feedback controller for ventilatory therapy. Ann Biomed Eng. 1985;13:359–72. doi: 10.1007/BF02407766.
    1. Ritchie RG, Ernst EA, Pate BL, Pearson JD, Sheppard LC. Closed-loop control of an anesthesia delivery system: development and animal testing. IEEE Trans Biomed Eng. 1987;BME-34:437–43. doi: 10.1109/TBME.1987.326078.
    1. Mitamura Y, Mikami T, Yamamoto K. A dual control system for assisting respiration. Med Biol Eng. 1975;13:846–54. doi: 10.1007/BF02478088.
    1. Beddis IR, Collins P, Levy NM, Godfrey S, Silverman M. New technique for servo-control of arterial oxygen tension in preterm infants. Arch Dis Child. 1979;54:278–80. doi: 10.1136/adc.54.4.278.
    1. Dugdale RE, Cameron RG, Tealman GT. Closed-loop control of the partial pressure of arterial oxygen in neonates. Clin Phys Physiol Meas. 1988;9:291–305. doi: 10.1088/0143-0815/9/4/001.
    1. Bhutani VK, Taube JC, Antunes MJ, Delivoria-Papadopoulos M. Adaptive control of inspired oxygen delivery to the neonate. Pediatr Pulmonol. 1992;14:110–7. doi: 10.1002/ppul.1950140209.
    1. Waisel DB, Fackler JC, Brunner JX, Kohane I. PEFIOS: An expert closed-loop oxygenation algorithm. Medinfo. 1995;8 Pt 2:1132–36.
    1. Claure N, Gerhardt T, Everett R, Musante G, Herrera C, Bancalari E. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. Pediatrics. 2001;107:1120–4. doi: 10.1542/peds.107.5.1120.
    1. Urschitz MS, Horn W, Seyfang A, Hallenberger A, Herberts T, Miksch S, et al. Automatic control of the inspired oxygen fraction in preterm infants: a randomized crossover trial. Am J Respir Crit Care Med. 2004;170:1095–100. doi: 10.1164/rccm.200407-929OC.
    1. Morozoff PE, Evans RW, Smyth JA. Proceedings of IEEE International Conference on Control and Applications. Vancouver: IEEE; 1993. Automatic control of blood oxygen saturation in premature infants.
    1. Gajdos M, Waitz M, Mendler MR. Braun W. Hummler H. Effects of a new device for automated closed loop control of inspired oxygen concentration on fluctuations of arterial and different regional organ tissue oxygen saturations in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2019;104:F360–5.
    1. East TD, Tolle CRBS, MCJames SBS, Farrell RMBS, Brunner JX. A non-linear closed-loop controller for oxygenation based on a clinically proven fifth dimensional quality surface. Anesthesiol J Am Soc Anesthesiologists. 1991;75(3):A468.
    1. Claure N, Bancalari E. Automated closed loop control of inspired oxygen concentration. Respir Care. 2013;58:151–61. doi: 10.4187/respcare.01955.
    1. Raemer DB, Xin-Bao J, Topulos GP. FIx controller: an instrument to automatically adjust inspired oxygen fraction using feedback control from a pulse oximeter. J Clin Monit Comput. 1997;13:91–101. doi: 10.1023/A:1007384122804.
    1. Johannigman JA, Muskat P, Barnes S, Davis K, Beck G, Branson RD. Autonomous control of oxygenation. J Trauma Acute Care Surg. 2008;64(4):S295–S301. doi: 10.1097/TA.0b013e31816bce54.
    1. Morozoff E, Smyth JA, Saif M. Applying computer models to realize closed-loop neonatal oxygen therapy. Anesth Analg. 2017;124:95–103. doi: 10.1213/ANE.0000000000001367.
    1. Otis AB, Fenn WO, Rahn H. Mechanics of Breathing in Man. J Appl Physiol. 1950;2:592–607. doi: 10.1152/jappl.1950.2.11.592.
    1. Tehrani FT. Automatic control of an artificial respirator. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991, Orlando, FL, USA,1991. p. 1738–9. .
    1. Laubscher TP, Heinrichs W, Weiler N, Hartmann G, Brunner JX. An adaptive lung ventilation controller. IEEE Trans Biomed Eng. 1994;41:51–59. doi: 10.1109/10.277271.
    1. Arnal JM, Wysocki M, Nafati C, Donati S, Granier I, Corno G, et al. Automatic selection of breathing pattern using adaptive support ventilation. Intensive Care Med. 2008;34:75–81. doi: 10.1007/s00134-007-0847-0.
    1. Rudowski R, Bokliden A, Carstensen A, Gill H, Ludwigs U, Matell G. Multivariable optimization of mechanical ventilation. A linear programming approach. Int J Clin Monit Comput. 1991;8:107–15. doi: 10.1007/BF02915544.
    1. Younes M. Proportional assist ventilation, a new approach to ventilatory support: theory. Am Rev Respir Dis. 1992;145:114–20. doi: 10.1164/ajrccm/145.1.114.
    1. Younes M, Kun J, Masiowski B, Webster K, Roberts D. A method for noninvasive determination of inspiratory resistance during proportional assist ventilation. Am J Respir Crit Care Med. 2001;163:829–39. doi: 10.1164/ajrccm.163.4.2005063.
    1. Younes M, Webster K, Kun J, Roberts D, Masiowski B. A method for measuring passive elastance during proportional assist ventilation. Am J Respir Crit Care Med. 2001;164:50–60. doi: 10.1164/ajrccm.164.1.2010068.
    1. Iotti GA, Brunner JX, Braschi A, Laubscher T, Olivei MC, Palo A, et al. Closed-loop control of airway occlusion pressure at 0.1 second (P0.1) applied to pressure-support ventilation: algorithm and application in intubated patients. Crit Care Med. 1996;24:771–9. doi: 10.1097/00003246-199605000-00008.
    1. Remmers JE, Gautier H. Servo respirator constructed from a positive-pressure ventilator. J Appl Physiol. 1976;41:252–5. doi: 10.1152/jappl.1976.41.2.252.
    1. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6. doi: 10.1038/71012.
    1. Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, et al. Neurally adjusted ventilatory assist improves patient–ventilator interaction. Intensiv Care Med. 2011;37:263–71. doi: 10.1007/s00134-010-2052-9.
    1. Tehrani FT, Roum JH. Intelligent decision support systems for mechanical ventilation. Artif Intell Med. 2008;44:171–82. doi: 10.1016/j.artmed.2008.07.006.
    1. Pomprapa A, Schwaiberger D, Pickerodt P, Tjarks O, Lachmann B, Leonhardt S. Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography. Crit Care. 2014;18:R128. doi: 10.1186/cc13937.
    1. Schwaiberger D, Pickerodt PA, Pomprapa A, Tjarks O, Kork F, Boemke W, et al. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept. J Clin Monit Comput. 2018;32:493–502. doi: 10.1007/s10877-017-0040-0.
    1. Lachmann B. Open up the lung and keep the lung open. Intensiv Care Med. 1992;18:319–21. doi: 10.1007/BF01694358.
    1. Pomprapa A, Muanghong D, Köny M, Leonhardt S, Pickerodt P, Tjarks O, et al. Artificial intelligence for closed-loop ventilation therapy with hemodynamic control using the open lung Concept. Int J Intell Comput Cybern. 2015;8:50–68. doi: 10.1108/IJICC-05-2014-0025.
    1. Hewlett AM, Platt AS, Terry VG. Mandatory minute volume.: a new concept in weaning from mechanical ventilation. Anaesthesia. 1977;32:163–9. doi: 10.1111/j.1365-2044.1977.tb11588.x.
    1. Chopin C, Chambrin MC, Mangalaboyi J, Lestavel P, Fourrier F. Carbon dioxide mandatory ventilation (CO2MV): A new method for weaning from mechanical ventilation: description and comparative clinical study with I.M.V. and T. tube method in COPD patient. Int J Clin Monit Comput. 1989;6:11–19. doi: 10.1007/BF01723368.
    1. Strickland JH, Hasson JH. A computer-controlled ventilator weaning system. Chest. 1991;100:1096–9. doi: 10.1378/chest.100.4.1096.
    1. Dojat M, Brochard L, Lemaire F, Harf A. A knowledge-based system for assisted ventilation of patients in intensive care units. Int J Clin Monit Comput. 1992;9:239–50. doi: 10.1007/BF01133619.
    1. Dojat M, Pachet F, Guessoum Z, Touchard D, Harf A, Brochard L. NéoGanesh: A working system for the automated control of assisted ventilation in ICUs. Artif Intell Med. 1997;11:97–117. doi: 10.1016/S0933-3657(97)00025-0.
    1. Linton DM, Potgieter PD, Davis S, Fourie ATJ, Brunner JX, Laubscher TP. Automatic weaning from mechanical ventilation using an adaptive lung ventilation controller. Chest. 1994;106:1843–50. doi: 10.1378/chest.106.6.1843.
    1. Brogi E, Cyr S, Kazan R, Giunta F, Hemmerling TM. Clinical performance and safety of closed-loop systems: a systematic review and meta-analysis of randomized controlled trials. Anesth Analg. 2017;124:446–55. doi: 10.1213/ANE.0000000000001372.
    1. Demoule A, Clavel M, Rolland-Debord C, Perbet S, Terzi N, Kouatchet A, et al. Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial. Intensiv Care Med. 2016;42:1723–32. doi: 10.1007/s00134-016-4447-8.
    1. Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF. Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a Cochrane systematic review and meta-analysis. Crit Care. 2015;19:48. doi: 10.1186/s13054-015-0755-6.
    1. Burns KE, Lellouche F, Nisenbaum R, Lessard MR, Friedrich JO. Automated weaning and SBT systems versus non-automated weaning strategies for weaning time in invasively ventilated critically ill adults. Cochrane Database Syst Rev. 2014.
    1. Lellouche F, Bouchard PA, Simard S, L’Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensiv Care Med. 2013;39:463–71. doi: 10.1007/s00134-012-2799-2.
    1. Chiumello D, Guérin C. Understanding the setting of PEEP from esophageal pressure in patients with ARDS. Intensiv Care Med. 2015;41:1465–7. doi: 10.1007/s00134-015-3776-3.
    1. Leonhardt S, Lachmann B. Electrical Impedance Tomography: The holy grail of ventilation and perfusion monitoring? Intensiv Care Med. 2012;38:1917–29. doi: 10.1007/s00134-012-2684-z.
    1. Gong B, Krueger-Ziolek S, Moeller K, Schullcke B, Zhao Z. Electrical impedance tomography: functional lung imaging on its way to clinical practice? Expert Rev Respir Med. 2015;9:721–737. doi: 10.1586/17476348.2015.1103650.
    1. Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy Group. Thorax. 2017;72:83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Prasad N, Cheng LF, Chivers C, Draugelis M, Engelhardt BE. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. 2017. arXiv:170406300 [cs].
    1. Kuck K, Johnson KB. The three laws of autonomous and closed-loop systems in anesthesia. Anesth Analg. 2017;124:377–80. doi: 10.1213/ANE.0000000000001602.

Source: PubMed

3
Subskrybuj