COPD Clinical Control: predictors and long-term follow-up of the CHAIN cohort

Myriam Calle Rubio, Juan Luis Rodriguez Hermosa, Juan P de Torres, José María Marín, Cristina Martínez-González, Antonia Fuster, Borja G Cosío, Germán Peces-Barba, Ingrid Solanes, Nuria Feu-Collado, Jose Luis Lopez-Campos, Ciro Casanova, CHAIN Study Investigators, Myriam Calle Rubio, Juan Luis Rodriguez Hermosa, Juan P de Torres, José María Marín, Cristina Martínez-González, Antonia Fuster, Borja G Cosío, Germán Peces-Barba, Ingrid Solanes, Nuria Feu-Collado, Jose Luis Lopez-Campos, Ciro Casanova, CHAIN Study Investigators

Abstract

Background: Control in COPD is a dynamic concept that can reflect changes in patients' clinical status that may have prognostic implications, but there is no information about changes in control status and its long-term consequences.

Methods: We classified 798 patients with COPD from the CHAIN cohort as controlled/uncontrolled at baseline and over 5 years. We describe the changes in control status in patients over long-term follow-up and analyze the factors that were associated with longitudinal control patterns and related survival using the Cox hazard analysis.

Results: 134 patients (16.8%) were considered persistently controlled, 248 (31.1%) persistently uncontrolled and 416 (52.1%) changed control status during follow-up. The variables significantly associated with persistent control were not requiring triple therapy at baseline and having a better quality of life. Annual changes in outcomes (health status, psychological status, airflow limitation) did not differ in patients, regardless of clinical control status. All-cause mortality was lower in persistently controlled patients (5.5% versus 19.1%, p = 0.001). The hazard ratio for all-cause mortality was 2.274 (95% CI 1.394-3.708; p = 0.001). Regarding pharmacological treatment, triple inhaled therapy was the most common option in persistently uncontrolled patients (72.2%). Patients with persistent disease control more frequently used bronchodilators for monotherapy (53%) at recruitment, although by the end of the follow-up period, 20% had scaled up their treatment, with triple therapy being the most frequent therapeutic pattern.

Conclusions: The evaluation of COPD control status provides relevant prognostic information on survival. There is important variability in clinical control status and only a small proportion of the patients had persistently good control. Changes in the treatment pattern may be relevant in the longitudinal pattern of COPD clinical control. Further studies in other populations should validate our results.

Trial registration: Clinical Trials.gov: identifier NCT01122758.

Keywords: Chronic obstructive pulmonary disease; Control; Management.

Conflict of interest statement

MCR has received speaking fees from Boehringer Ingelheim, AstraZeneca, GlaxoSmithKline, Menarini and Novartis, and consulting fees from GlaxoSmith¬Kline, Gebro Pharma and Novartis. There is no real or perceived conflict of interest between these sources and the present paper. JLRH has received speaking fees from Boehringer Ingelheim and Gebro Pharma. There is no real or perceived conflict of interest between these sources and the present paper. JPT does not have a real or perceived conflict of interest. JMM does not have a real or perceived conflict of interest. CMG does not have a real or perceived conflict of interest. AF does not have a real or perceived conflict of interest. BC reports grants, personal fees and non-financial support from GSK; grants, personal fees and non-financial support from Chiesi; grants, personal fees and non-financial support from Astrazeneca; grants from Menarini and Boehringer-Ingheilm; non-financial support from Novartis; personal fees and non-financial support from Sanofi, outside the submitted work. GPB reports grants, personal fees and non-financial support from GSK, Boehringer Ingelheim, Chiesi and Orion Pharma. There is no real or perceived conflict of interest between these sources and the present paper. IS does not have a real or perceived conflict of interest. NFC does not have a real or perceived conflict of interest. JLLC reports personal fees and non-financial support from AstraZeneca; grants, personal fees and non-financial support from Boehringer Ingelheim; grants, personal fees and non-financial support from Chiesi; personal fees and non-financial support from CSL Behring; grants, personal fees and non-financial support from Esteve; personal fees and non-financial support from Ferrer; grants, personal fees and non-financial support from GebroPharma; grants, personal fees and non-financial support from GlaxoSmithKline; grants, personal fees and non-financial support from Grifols; grants, personal fees and non-financial support from Menarini; grants, personal fees and non-financial support from Novartis; grants, personal fees and non-financial support from Rovi; and grants, personal fees and non-financial support from Teva, outside the submitted work. CC has received speaker fees from Novartis, Menarini, Boehringer Ingelheim, AstraZeneca, GlaxoSmithKline and Teva, and consulting fees from AstraZeneca, Esteve, GlaxoSmithKline and Novartis.

Figures

Fig. 1
Fig. 1
The evolution of the clinical control pattern every year
Fig. 2
Fig. 2
Changes in treatment patterns for COPD at baseline and last visit in persistently controlled and uncontrolled patients
Fig. 3
Fig. 3
Kaplan–Meier analysis for all-cause mortality. Persistently controlled patients were associated with a longer survival time than persistently uncontrolled patients

References

    1. Agusti A, MacNee W. The COPD control panel: towards personalised medicine in COPD. Thorax. 2013;68(1):687–690. doi: 10.1136/thoraxjnl-2012-202772.
    1. Miravitlles M, Soler-Cataluña JJ, Calle M, Soriano JB. Treatment of COPD by clinical phenotypes: putting old evidence into clinical practice. Eur Respir J. 2013;41(6):1252–1256. doi: 10.1183/09031936.00118912.
    1. McDonald V, Higgins I, Wood LG, Gibson PG. Multidimensional assessment and tailored interventions for COPD: respiratory utopia or common sense? Thorax. 2013;68(7):691–694. doi: 10.1136/thoraxjnl-2012-202646.
    1. Vogelmeier CF, Criner GJ, Martínez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Arch Bronconeumol. 2017;53(3):128–149. doi: 10.1016/j.arbres.2017.02.001.
    1. Miravitlles M, Soler-Cataluña JJ, Calle M, et al. Spanish COPD guidelines (GesEPOC). 2017. Pharmacological treatment of stable chronic obstructive pulmonary disease. Arch Bronconeumol. 2017;53(6):324–335.
    1. Soler-Cataluña JJ, Alcázar B, Miravitlles M. The concept of control of COPD in clinical practice. Int J Chron Obstruct Pulmon Dis. 2014;9:1397–1405.
    1. Soler-Cataluña JJ, Alcazar-Navarrete B, Miravitlles M. The concept of control in COPD: a new proposal for optimising therapy. Eur Respir J. 2014;44(4):1072–1075. doi: 10.1183/09031936.00064414.
    1. Soler-Cataluña JJ, Marzo M, Catalán P, Miralles C, Alcazar B, Miravitlles M. Validation of clinical control in COPD as a new tool for optimizing treatment. Int J Chron Obstruct Pulmon Dis. 2018;13:3719–3731. doi: 10.2147/COPD.S178149.
    1. Nibber A, Chisholm A, Soler-Cataluña JJ, Alcazar B, Price D, Miravitlles M. Validating the concept of COPD control: a real-world cohort study from the United Kingdom. COPD. 2017;14(5):504–512. doi: 10.1080/15412555.2017.1350154.
    1. Miravitlles M, Sliwinski P, Rhee CK, et al. Evaluation criteria for clinical control in a prospective, international, multicenter study of patients with COPD. Respir Med. 2018;136:8–14. doi: 10.1016/j.rmed.2018.01.019.
    1. Soler-Cataluña JJ, Alcázar B, Marzo M, Pérez J, Miravitlles M. Evaluation of changes in control status in COPD: an opportunity for early intervention. Chest. 2020;157:1138–1146. doi: 10.1016/j.chest.2019.11.004.
    1. Lopez-Campos JL, Peces-Barba G, Soler-Cataluna JJ, et al. Chronic obstructive pulmonary disease history assessment in Spain: a multidimensional chronic obstructive pulmonary disease evaluation: study methods and organization. Arch Bronconeumol. 2012;48(12):453–459. doi: 10.1016/j.arbres.2012.05.006.
    1. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–383. doi: 10.1016/0021-9681(87)90171-8.
    1. American Thoracic Society Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis. 1991;144:1202–1218. doi: 10.1164/ajrccm/144.5.1202.
    1. Macintyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26:720–735. doi: 10.1183/09031936.05.00034905.
    1. Mahler DA, Weels CK. Evaluation of clinical methods for rating dyspnea. Chest. 1988;93:580–586. doi: 10.1378/chest.93.3.580.
    1. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline LN. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648–654. doi: 10.1183/09031936.00102509.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Jenkins CR, Postma DS, Anzueto AR, et al. Reliever salbutamol use as a measure of exacerbation risk in chronic obstructive pulmonary disease. BMC PulmMed. 2015;15:97. doi: 10.1186/s12890-015-0077-0.
    1. Miravitlles M, Sliwinski P, Rhee CK, et al. Changes in control status of COPD over time and their consequences: a prospective international, study. Arch Bronconeumol. 2020 doi: 10.1016/j.arbres.2020.06.003.
    1. Busch R, Han MK, Bowler RP, et al. Risk factors for COPD exacerbations in inhaled medication users: the COPDGene study biannual longitudinal follow-up prospective cohort. BMC Pulm Med. 2016;16:28. doi: 10.1186/s12890-016-0191-7.
    1. Hurst JR, Vestbo J, Anzueto A, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–1138. doi: 10.1056/NEJMoa0909883.
    1. Calverley PM, Tetzlaff K, Dusser D, et al. Determinants of exacerbation risk in patients with COPD in the TIOSPIR study. Int J Chron Obstruct Pulmon Dis. 2017;12:3391–3405. doi: 10.2147/COPD.S145814.
    1. Riesco JA, Alcazar B, Trigueros JA, Campuzano A, Perez J, Lorenzo JL. Active smoking and COPD phenotype: distribution and impact on prognostic factors. Int J Chron Obstruct Pulmon Dis. 2017;12:1989–1999. doi: 10.2147/COPD.S135344.
    1. Josephs L, Culliford D, Johnson M, Thomas M. Improved outcomes in exsmokers with COPD: a UK primary care observational cohort study. Eur Respir J. 2017;49(5):1602114. doi: 10.1183/13993003.02114-2016.
    1. Donaldson GC, Müllerova H, Locantore N, et al. Factors associated with change in exacerbation frequency in COPD. Respir Res. 2013;14:79. doi: 10.1186/1465-9921-14-79.
    1. Han MK, Quibrera PM, Carretta EE, et al. Frequency of exacerbations in patients with chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5(8):619–626. doi: 10.1016/S2213-2600(17)30207-2.
    1. Vestbo J, Fabbri L, Papi A, et al. Inhaled corticosteroid containing combinations and mortality in COPD. Eur Respir J. 2018;52(6):1801230. doi: 10.1183/13993003.01230-2018.
    1. Singh D, Papi A, Corradi M, et al. Single inhaler triple therapy versus inhaled corticosteroid plus long-acting β2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial. Lancet. 2016;388:963–973. doi: 10.1016/S0140-6736(16)31354-X.
    1. Lipson DA, Barnhart F, Brealey N, et al; IMPACT Investigators. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378:1671–80.
    1. Barrecheguren M, Kostikas K, Mezzi K, et al. COPD clinical control as a predictor of future exacerbations: concept validation in the SPARK study population. Thorax. 2020;75:351–353. doi: 10.1136/thoraxjnl-2018-212752.
    1. Miravitlles M, Sliwinski P, Rhee CK, et al. Predictive value of control of COPD for risk of exacerbations: an international, prospective study. Respirology. 2020;25(11):1136–1143. doi: 10.1111/resp.13811.
    1. Garcia-Aymerich J, Gómez FP, Antó JM, en nombre del Grupo Investigador del Estudio PAC-COPD Caracterización fenotípica y evolución de la EPOC en el estudio PAC-COPD: diseño y metodología [Phenotypic characterization and course of chronic obstructive pulmonary disease in the PAC-COPD Study: design and methods] Arch Bronconeumol. 2009;45:4–11.
    1. Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. Am J Respir Crit Care Med. 2003;167:544–549. doi: 10.1164/rccm.200206-583OC.
    1. Calle Rubio M, Soler-Cataluña JJ, López-Campos JL, et al. Assessing the clinical practice in specialized outpatient clinics for chronic obstructive pulmonary disease: analysis of the EPOCONSUL clinical audit. PLoS ONE. 2019;14:e0211732. doi: 10.1371/journal.pone.0211732.
    1. Baloira A, Gonzalez-Moro JMR, Sanjuán E, Trigueros JA, Casamor R. Degree of control of patients with chronic obstructive pulmonary disease in Spain: SINCON study. BMC Pulm Med. 2018;18:183. doi: 10.1186/s12890-018-0749-7.

Source: PubMed

3
Subskrybuj