Inflammatory Factors as Potential Markers of Early Neurological Deterioration in Acute Ischemic Stroke Patients Receiving Endovascular Therapy - The AISRNA Study

Qi-Wen Deng, Shi Huang, Shuo Li, Qian Zhai, Qing Zhang, Zhen-Jie Wang, Wen-Xia Chen, Huiling Sun, Min Lu, Junshan Zhou, Qi-Wen Deng, Shi Huang, Shuo Li, Qian Zhai, Qing Zhang, Zhen-Jie Wang, Wen-Xia Chen, Huiling Sun, Min Lu, Junshan Zhou

Abstract

Background and purpose: This study aimed to explore several peripheral blood-based markers related to the inflammatory response in a total of 210 patients with acute ischemic stroke (AIS) caused by large artery occlusion in the anterior circulation who received endovascular therapy (EVT) from an observational study of clinical significance of circulating non-coding RNA in acute ischemic stroke (AISRNA).

Methods: We collected baseline characteristics of 210 AIS patients participating in an observational acute stroke cohort: the AISRNA study. The following inflammatory factors were measured in these participants: interleukin-2 [IL-2], IL-4, IL-6, IL-10, tumor necrosis factor-α [TNF-α], and interferon-γ [IFN-γ]. The National Institute of Health Stroke Scale score increase of ≥4 within 24 hours after EVT defined as early neurological deterioration (END).

Results: Compared with patients without END, patients with END had a higher incidence of atrial fibrillation (P=0.012), and also had higher levels of IL-6 and IL-10 (P<0.01). Furthermore, we found that the area under the curves (AUCs) of IL-6 and IL-10 for predicting END were 0.768 (0.697-0.829), and 0.647 (0.570-0.719), respectively. Adjusting for age, sex, and atrial fibrillation, the odds ratios (ORs; 95% confidence interval) for incident END for IL-6 and IL-10 were 1.98 (1.05-6.69) and 1.18 (1.04-1.33), respectively. Additionally, we found significant changes over time in the expression levels of IL-4, IL-6, and IL-10 in patients with END compared with patients without END (P<0.05).

Conclusion: IL-6 and IL-10 levels at admission may be potential markers of END after EVT, and the time course of IL-4, IL-6, and IL-10 is correlated with stroke progression. Further larger studies are needed to confirm the current findings.

Trial registration: ClinicalTrials.gov NCT04175691. Registered November 21, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04175691.

Keywords: IL-6; acute ischemic stroke; early neurological deterioration; endovascular therapy; inflammatory factors.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021 Deng et al.

Figures

Figure 1
Figure 1
Flowchart of the study patients to illustrate study screening, recruitment, and follow-up.
Figure 2
Figure 2
Discriminatory capacities of IL-6 and IL-10 for END after EVT. The area under the curves of IL-6 and IL-10 for predicting END were 0.791 (0.689–0.871), and 0.564 (0.452–0.671), respectively (P<0.001).
Figure 3
Figure 3
Time course of inflammatory factors after stroke onset (days 1 to 7). Significant changes over time were observed in the expression levels of IL-4, IL-6, and IL-10 in patients with END compared with patients without END (P<0.05). IL-4 levels peaked at day 2 and then rapidly decreased at day 3 (A). IL-6 levels were obviously increased from days 1 to 7 after EVT (B). IL-10 (C) levels also peaked at day 2 and then rapidly decreased at day 3. No significant change over time was found in the expression levels of IL-2 (D), TNF-α (E), and INF-γ (F) between patients with END and patients without END (P>0.05). *P<0.05, **P<0.01, ***P<0.001.

References

    1. Hankey GJ. Stroke. Lancet. 2017;389(10069):641–654. doi:10.1016/S0140-6736(16)30962-X
    1. Deng QW, Liu YK, Zhang YQ, et al. Low triglyceride to high-density lipoprotein cholesterol ratio predicts hemorrhagic transformation in large atherosclerotic infarction of acute ischemic stroke. Aging. 2019;11(5):1589–1601. doi:10.18632/aging.101859
    1. Deng QW, Li S, Wang H, et al. The short-term prognostic value of the triglyceride-to-high-density lipoprotein cholesterol ratio in acute ischemic stroke. Aging Dis. 2018;9(3):498–506. doi:10.14336/AD.2017.0629
    1. Deng QW, Wang H, Sun CZ, et al. Triglyceride to high-density lipoprotein cholesterol ratio predicts worse outcomes after acute ischaemic stroke. Eur J Neurol. 2017;24(2):283–291. doi:10.1111/ene.13198
    1. Byblow WD, Stinear CM. It is difficult to make predictions, especially about the future. Stroke. 2017;48(12):3187–3188. doi:10.1161/STROKEAHA.117.019071
    1. Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38(3):1097–1103. doi:10.1161/01.STR.0000258346.68966.9d
    1. Deng QW, Yang H, Yan FL, et al. Blocking sympathetic nervous system reverses partially stroke-induced immunosuppression but does not aggravate functional outcome after experimental stroke in rats. Neurochem Res. 2016;41(8):1877–1886. doi:10.1007/s11064-016-1899-8
    1. Schuppner R, Dirks M, Grosse GM, et al. ADAMTS-13 activity predicts outcome in acute ischaemic stroke patients undergoing endovascular treatment. Thromb Haemost. 2018;118(4):758–767.
    1. Bustamante A, Sobrino T, Giralt D, et al. Prognostic value of blood interleukin-6 in the prediction of functional outcome after stroke: a systematic review and meta-analysis. J Neuroimmunol. 2014;274(1–2):215–224. doi:10.1016/j.jneuroim.2014.07.015
    1. Denes A, Thornton P, Rothwell NJ, Allan SM. Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun. 2010;24(5):708–723. doi:10.1016/j.bbi.2009.09.010
    1. Reaux-le Goazigo A, Van Steenwinckel J, Rostene W, Melik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol. 2013;104:67–92.
    1. Li X, Lin S, Chen X, et al. The prognostic value of serum cytokines in patients with acute ischemic stroke. Aging Dis. 2019;10(3):544–556. doi:10.14336/AD.2018.0820
    1. Li S, Lu G, Wang D, et al. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur J Neurol. 2020;27(8):1625–1637.
    1. Suzuki S, Tanaka K, Suzuki N. Ambivalent aspects of interleukin-6 in cerebral ischemia: inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab. 2009;29(3):464–479. doi:10.1038/jcbfm.2008.141
    1. Feuerstein GZ, Wang X, Barone FC. The role of cytokines in the neuropathology of stroke and neurotrauma. Neuroimmunomodulation. 1998;5(3–4):143–159. doi:10.1159/000026331
    1. Seners P, Hurford R, Tisserand M, et al. Is unexplained early neurological deterioration after intravenous thrombolysis associated with thrombus extension? Stroke. 2017;48(2):348–352. doi:10.1161/STROKEAHA.116.015414
    1. Adams HP Jr., Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41. doi:10.1161/01.STR.24.1.35
    1. Chamorro A, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke. 2006;37(2):291–293. doi:10.1161/01.STR.0000200561.69611.f8
    1. Esenwa CC, Elkind MS. Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke. Nat Rev Neurol. 2016;12(10):594–604. doi:10.1038/nrneurol.2016.125
    1. Chamorro A, Amaro S, Vargas M, et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci. 2007;252(1):29–35. doi:10.1016/j.jns.2006.10.001
    1. Kim JM, Bae JH, Park KY, et al. Incidence and mechanism of early neurological deterioration after endovascular thrombectomy. J Neurol. 2019;266(3):609–615. doi:10.1007/s00415-018-09173-0
    1. Dziedzic T, Slowik A, Szczudlik A. Interleukin-6 and stroke: cerebral ischemia versus nonspecific factors influencing interleukin-6.. Stroke. 2003;34(12):e229–e230. doi:10.1161/01.STR.0000103350.88094.5B
    1. Acalovschi D, Wiest T, Hartmann M, et al. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke. 2003;34(8):1864–1869. doi:10.1161/01.STR.0000079815.38626.44
    1. Park SY, Kim J, Kim OJ, et al. Predictive value of circulating interleukin-6 and heart-type fatty acid binding protein for three months clinical outcome in acute cerebral infarction: multiple blood markers profiling study. Critical Care. 2013;17(2):R45. doi:10.1186/cc12564
    1. Mechtouff L, Bochaton T, Paccalet A, et al. Association of Interleukin-6 levels and futile reperfusion after mechanical thrombectomy. Neurology. 2020;96(5):e752–e757. doi:10.1212/WNL.0000000000011268
    1. Hotter B, Hoffmann S, Ulm L, Meisel C, Fiebach JB, Meisel A. IL-6 plasma levels correlate with cerebral perfusion deficits and infarct sizes in stroke patients without associated infections. Front Neurol. 2019;10:83. doi:10.3389/fneur.2019.00083
    1. Jenny NS, Callas PW, Judd SE, et al. Inflammatory cytokines and ischemic stroke risk: the REGARDS cohort. Neurology. 2019;92(20):e2375–e2384. doi:10.1212/WNL.0000000000007416
    1. Sotgiu S, Zanda B, Marchetti B, et al. Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur J Neurol. 2006;13(5):505–513. doi:10.1111/j.1468-1331.2006.01280.x
    1. Perini F, Morra M, Alecci M, Galloni E, Marchi M, Toso V. Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients. Neurol Sci. 2001;22(4):289–296. doi:10.1007/s10072-001-8170-y
    1. Hoffmann S, Harms H, Ulm L, et al. Stroke-induced immunodepression and dysphagia independently predict stroke-associated pneumonia - The PREDICT study. J Cereb Blood Flow Metab. 2017;37(12):3671–3682. doi:10.1177/0271678X16671964
    1. Mazzotta G, Sarchielli P, Caso V, et al. Different cytokine levels in thrombolysis patients as predictors for clinical outcome. Eur J Neurol. 2004;11(6):377–381. doi:10.1111/j.1468-1331.2004.00798.x
    1. Smith CJ, Emsley HC, Gavin CM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 2004;4(1):2. doi:10.1186/1471-2377-4-2
    1. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology. 2015;96(Pt A):55–69. doi:10.1016/j.neuropharm.2014.10.020
    1. Liesz A, Bauer A, Hoheisel JD, Veltkamp R. Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: an experimental microarray study. Neurosci Lett. 2014;579:18–23. doi:10.1016/j.neulet.2014.07.003
    1. Protti GG, Gagliardi RJ, Forte WC, Sprovieri SR. Interleukin-10 may protect against progressing injury during the acute phase of ischemic stroke. Arq Neuropsiquiatr. 2013;71(11):846–851. doi:10.1590/0004-282X20130168
    1. Singh HV, Pandey A, Shrivastava AK, Raizada A, Singh SK, Singh N. Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin Chim Acta. 2013;419:136–138. doi:10.1016/j.cca.2013.02.014
    1. van Exel E, Gussekloo J, de Craen AJ, Bootsma-van der Wiel A, Frolich M, Westendorp RG. Inflammation and stroke: the Leiden 85-Plus Study. Stroke. 2002;33(4):1135–1138. doi:10.1161/01.STR.0000014206.05597.9E
    1. Xie G, Myint PK, Zaman MJ, et al. Relationship of serum interleukin-10 and its genetic variations with ischemic stroke in a Chinese general population. PLoS One. 2013;8(9):e74126. doi:10.1371/journal.pone.0074126
    1. Li S, Lu G, Wang D, et al. MicroRNA-4443 regulates monocyte activation by targeting TRAF4 in stroke-induced immunosuppression. Eur J Neurol. 2020;27(8):1625–1637. doi:10.1111/ene.14282
    1. Wang H, Deng QW, Peng AN, et al. beta-arrestin2 functions as a key regulator in the sympathetic-triggered immunodepression after stroke. J Neuroinflammation. 2018;15(1):102. doi:10.1186/s12974-018-1142-4
    1. Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke. 2011;42(7):2026–2032. doi:10.1161/STROKEAHA.110.593772
    1. Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T. In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflammation. 2016;13(1):287. doi:10.1186/s12974-016-0753-x

Source: PubMed

3
Subskrybuj