Prolonged sedentary time and physical activity in workplace and non-work contexts: a cross-sectional study of office, customer service and call centre employees

Alicia A Thorp, Genevieve N Healy, Elisabeth Winkler, Bronwyn K Clark, Paul A Gardiner, Neville Owen, David W Dunstan, Alicia A Thorp, Genevieve N Healy, Elisabeth Winkler, Bronwyn K Clark, Paul A Gardiner, Neville Owen, David W Dunstan

Abstract

Background: To examine sedentary time, prolonged sedentary bouts and physical activity in Australian employees from different workplace settings, within work and non-work contexts.

Methods: A convenience sample of 193 employees working in offices (131), call centres (36) and customer service (26) was recruited. Actigraph GT1M accelerometers were used to derive percentages of time spent sedentary (<100 counts per minute; cpm), in prolonged sedentary bouts (≥20 minutes or ≥30 minutes), light-intensity activity (100-1951 cpm) and moderate-to-vigorous physical activity (MVPA; ≥1952 cpm). Using mixed models adjusted for confounders, these were compared for: work days versus non-work days; work hours versus non-work hours (work days only); and, across workplace settings.

Results: Working hours were mostly spent sedentary (77.0%, 95%CI: 76.3, 77.6), with approximately half of this time accumulated in prolonged bouts of 20 minutes or more. There were significant (p<0.05) differences in all outcomes between workdays and non-work days, and, on workdays, between work- versus non-work hours. Results consistently showed "work" was more sedentary and had less light-intensity activity, than "non-work". The period immediately after work appeared important for MVPA. There were significant (p<0.05) differences in all sedentary and activity outcomes occurring during work hours across the workplace settings. Call-centre workers were generally the most sedentary and least physically active at work; customer service workers were typically the least sedentary and the most active at work.

Conclusion: The workplace is a key setting for prolonged sedentary time, especially for some occupational groups, and the potential health risk burden attached requires investigation. Future workplace regulations and health promotion initiatives for sedentary occupations to reduce prolonged sitting time should be considered.

Figures

Figure 1
Figure 1
Proportions of each daily hour from 06:00 to 22:00 spent sedentary, in light-intensity activity and MVPA on work days (Panel A) and non-workdays (Panel B). Median work start time is 08:45; median work finish time is 17:17. Footnote: Values presented at the top of each column graph represent the number of valid days each one-hour period is based on.

References

    1. Sedentary Behaviour Research Network. Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–542. doi: 10.1139/h2012-024.
    1. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. doi: 10.1249/MSS.0b013e3181930355.
    1. Patel AV, Bernstein L, Deka A, Feigelson HS, Campbell PT, Gapstur SM, Colditz GA, Thun MJ. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am J Epidemiol. 2010;172(4):419–429. doi: 10.1093/aje/kwq155.
    1. Dunstan DW, Barr EL, Healy GN, Salmon J, Shaw JE, Balkau B, Magliano DJ, Cameron AJ, Zimmet PZ, Owen N. Television viewing time and mortality: the australian diabetes, obesity and lifestyle study (AusDiab) Circulation. 2010;121(3):384–391. doi: 10.1161/CIRCULATIONAHA.109.894824.
    1. Dunstan DW, Salmon J, Owen N, Armstrong T, Zimmet PZ, Welborn TA, Cameron AJ, Dwyer T, Jolley D, Shaw JE. Physical activity and television viewing in relation to risk of undiagnosed abnormal glucose metabolism in adults. Diabetes Care. 2004;27(11):2603–2609. doi: 10.2337/diacare.27.11.2603.
    1. Dunstan DW, Salmon J, Owen N, Armstrong T, Zimmet PZ, Welborn TA, Cameron AJ, Dwyer T, Jolley D, Shaw JE. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48(11):2254–2261. doi: 10.1007/s00125-005-1963-4.
    1. Thorp AA, Healy GN, Owen N, Salmon J, Ball K, Shaw JE, Zimmet PZ, Dunstan DW. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: australian diabetes, obesity and lifestyle (AusDiab) study 2004–2005. Diabetes Care. 2010;33(2):327–334. doi: 10.2337/dc09-0493.
    1. Healy GN, Dunstan DW, Salmon J, Shaw JE, Zimmet PZ, Owen N. Television time and continuous metabolic risk in physically active adults. Med Sci Sports Exerc. 2008;40(4):639–645. doi: 10.1249/MSS.0b013e3181607421.
    1. Dunstan DW, Salmon J, Healy GN, Shaw JE, Jolley D, Zimmet PZ, Owen N. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care. 2007;30(3):516–522. doi: 10.2337/dc06-1996.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Brown WJ, Miller YD, Miller R. Sitting time and work patterns as indicators of overweight and obesity in Australian adults. Int J Obes Relat Metab Disord. 2003;27(11):1340–1346. doi: 10.1038/sj.ijo.0802426.
    1. van Uffelen JG, Wong J, Chau JY, van der Ploeg HP, Riphagen I, Gilson ND, Burton NW, Healy GN, Thorp AA, Clark BK, Gardiner PA, Dunstan DW, Bauman A, Owen N, Brown WJ. Occupational sitting and health risks: a systematic review. Am J Prev Med. 2010;39(4):379–388. doi: 10.1016/j.amepre.2010.05.024.
    1. Carnethon M, Whitsel LP, Franklin BA, Kris-Etherton P, Milani R, Pratt CA, Wagner GR. Worksite wellness programs for cardiovascular disease prevention: a policy statement from the american heart association. Circulation. 2009;120(17):1725. doi: 10.1161/CIRCULATIONAHA.109.192653.
    1. Jans MP, Proper KI, Hildebrandt VH. Sedentary behavior in Dutch workers: differences between occupations and business sectors. Am J Prev Med. 2007;33(6):450–454. doi: 10.1016/j.amepre.2007.07.033.
    1. Mummery WK, Schofield GM, Steele R, Eakin EG, Brown WJ. Occupational sitting time and overweight and obesity in Australian workers. Am J Prev Med. 2005;29(2):91–97. doi: 10.1016/j.amepre.2005.04.003.
    1. Miller R, Brown W. Steps and sitting in a working population. Int J Behav Med. 2004;11(4):219–224. doi: 10.1207/s15327558ijbm1104_5.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc. Accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021.
    1. Ryan CG, Grant PM, Dall PM, Granat MH. Sitting patterns at work: objective measurement of adherence to current recommendations. Ergonomics. 2011;54(6):531–538. doi: 10.1080/00140139.2011.570458.
    1. Toomingas A, Forsman M, Mathiassen SE, Heiden M, Nilsson T. Variation between seated and standing/walking postures among male and female call centre operators. BMC Publ Health. 2012;12(1):154. doi: 10.1186/1471-2458-12-154.
    1. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N. Objectively measured sedentary time, physical activity, and metabolic risk: the australian diabetes, obesity and lifestyle study (AusDiab) Diabetes Care. 2008;31(2):369–371.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care. 2007;30(6):1384–1389. doi: 10.2337/dc07-0114.
    1. Camhi SM, Sisson SB, Johnson WD, Katzmarzyk PT, Tudor-Locke C. Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health. Prev Med. 2011;52(5):358–360. doi: 10.1016/j.ypmed.2011.01.030.
    1. Chau JY, der Ploeg HP, van Uffelen JG, Wong J, Riphagen I, Healy GN, Gilson ND, Dunstan DW, Bauman AE, Owen N, Brown WJ. Are workplace interventions to reduce sitting effective? A systematic review. Prev Med. 2010;51(5):352–356. doi: 10.1016/j.ypmed.2010.08.012.
    1. Otten JJ, Jones KE, Littenberg B, Harvey-Berino J. Effects of television viewing reduction on energy intake and expenditure in overweight and obese adults: a randomized controlled trial. Arch Intern Med. 2009;169(22):2109–2115. doi: 10.1001/archinternmed.2009.430.
    1. Gardiner PA, Eakin EG, Healy GN, Owen N. Feasibility of reducing older adults’ sedentary time. Am J Prev Med. 2011;41(2):174–177. doi: 10.1016/j.amepre.2011.03.020.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–666. doi: 10.2337/dc07-2046.
    1. Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32(5):590–597. doi: 10.1093/eurheartj/ehq451.
    1. Atlas SJ, Deyo RA. Evaluating and managing acute low back pain in the primary care setting. J Gen Intern Med. 2001;16(2):120–131. doi: 10.1111/j.1525-1497.2001.91141.x.
    1. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, Shaw JE, Bertovic DA, Zimmet PZ, Salmon J, Owen N. Breaking Up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35:976–983. doi: 10.2337/dc11-1931.
    1. McCrady SK, Levine JA. Sedentariness at work: how much do we really sit? Obesity (Silver Spring) 2009;17(11):2103–2105. doi: 10.1038/oby.2009.117.
    1. Tigbe WW, Lean ME, Granat MH. A physically active occupation does not result in compensatory inactivity during out-of-work hours. Prev Med. 2011;53(1–2):48–52.
    1. Clark B, Thorp A, Winkler E, Gardiner P, Healy G, Owen N, Dunstan D. Validity of self-report measures of workplace sitting time and breaks in sitting time. Med Sci Sports Exerc. 2011;43(10):1907–1912.
    1. WHO Expert Committee on Physical Status. The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee. Geneva, Switzerland: World Health Organization; 1995. (World Health Organization Technical Report Series 854).
    1. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–881. doi: 10.1093/aje/kwm390.
    1. Healy GN, Clark BK, Winkler EA, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults’ sedentary time in population-based studies. Am J Prev Med. 2011;41(2):216–227. doi: 10.1016/j.amepre.2011.05.005.
    1. Matthew CE. Calibration of accelerometer output for adults. Med Sci Sports Exerc. 2005;37(11 Suppl):S512–S522.
    1. Winkler EA, Gardiner PA, Clark BK, Matthews CE, Owen N, Healy GN. Identifying sedentary time using automated estimates of accelerometer wear time. Br J Sports Med. 2012;46(6):436–442. doi: 10.1136/bjsm.2010.079699.
    1. Masse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, Treuth M. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37(11 Suppl):S544–S554.
    1. Conn VS, Hafdahl AR, Cooper PS, Brown LM, Lusk SL. Meta-analysis of workplace physical activity interventions. Am J Prev Med. 2009;37(4):330–339. doi: 10.1016/j.amepre.2009.06.008.
    1. Godfrey A, Culhane KM, Lyons GM. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor. Med Eng Phys. 2007;29(8):930–934. doi: 10.1016/j.medengphy.2006.10.001.
    1. Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40(12):992–997. doi: 10.1136/bjsm.2006.030262.
    1. Hagstromer M, Troiano RP, Sjostrom M, Berrigan D. Levels and patterns of objectively assessed physical activity--a comparison between Sweden and the United States. Am J Epidemiol. 2010;171(10):1055–1064. doi: 10.1093/aje/kwq069.
    1. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):1561–1567. doi: 10.1249/MSS.0b013e31820ce174.

Source: PubMed

3
Subskrybuj