Comparison of the onset time between 0.375% ropivacaine and 0.25% levobupivacaine for ultrasound-guided infraclavicular brachial plexus block: a randomized-controlled trial

Ha-Jung Kim, Sooho Lee, Ki Jinn Chin, Jin-Sun Kim, Hyungtae Kim, Young-Jin Ro, Won Uk Koh, Ha-Jung Kim, Sooho Lee, Ki Jinn Chin, Jin-Sun Kim, Hyungtae Kim, Young-Jin Ro, Won Uk Koh

Abstract

At centers with pressure on rapid operating room turnover, onset time is one of the important considerations for choosing a local anesthetic drug. To hasten the onset of the block, higher concentrations of local anesthetics are sometimes used. However, the use of diluted local anesthetics may be safer. Therefore, we aimed to compare the onset times of equipotential levobupivacaine and ropivacaine at low concentrations for infraclavicular brachial plexus block. Adult patients undergoing upper extremity surgery under ultrasound-guided infraclavicular brachial plexus block at our center were randomly allocated to the levobupivacaine and ropivacaine groups. Infraclavicular brachial plexus block was induced with 0.25% levobupivacaine or 0.375% ropivacaine depending on the assigned group. The degrees of sensory and motor blockade were assessed for 40 min after the administration of local anesthetics. A total of 46 patients were included in the analysis. Infraclavicular brachial plexus block with 0.25% levobupivacaine and 0.375% ropivacaine provided sufficient surgical anesthesia. The sensory onset time of 0.375% ropivacaine was shorter than that of 0.25% levobupivacaine (group R, 15 [15.0-22.5] min; group L, 30 [17.5-35.0] min, p = 0.001). There were no significant differences in other block characteristics and clinical outcomes between the two groups. Thus, when a quicker block onset is required, 0.375% ropivacaine is a better choice than 0.25% levobupivacaine.Trial registration ClinicalTrials.gov (NCT03679897).

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Flow diagram presenting enrollment, intervention allocation, follow-up and data analysis.
Figure 2
Figure 2
Kaplan–Meier curve of proportion of patients who achieved (A) a complete sensory block and (B) a complete motor block after infraclavicular brachial plexus block. (A) log-rank test, p = 0.032; (B) log-rank test, p = 0.045.

References

    1. Chin, K. J., Alakkad, H., Adhikary, S. D. & Singh, M. Infraclavicular brachial plexus block for regional anaesthesia of the lower arm. Cochrane Database Syst. Rev.28, CD005487. 10.1002/14651858.CD005487.pub3 (2013).
    1. Mariano ER, et al. A randomized comparison of infraclavicular and supraclavicular continuous peripheral nerve blocks for postoperative analgesia. Reg. Anesth. Pain Med. 2011;36:26–31. doi: 10.1097/AAP.0b013e318203069b.
    1. Brenner D, Iohom G, Mahon P, Shorten G. Efficacy of axillary versus infraclavicular brachial plexus block in preventing tourniquet pain: a randomised trial. Eur. J. Anaesthesiol. 2019;36:48–54. doi: 10.1097/eja.0000000000000928.
    1. Ootaki C, Hayashi H, Amano M. Ultrasound-guided infraclavicular brachial plexus block: an alternative technique to anatomical landmark-guided approaches. Reg. Anesth. Pain Med. 2000;25:600–604. doi: 10.1053/rapm.2000.18184.
    1. Casati A, Putzu M. Bupivacaine, levobupivacaine and ropivacaine: are they clinically different? Best Pract. Res. Clin. Anaesthesiol. 2005;19:247–268. doi: 10.1016/j.bpa.2004.12.003.
    1. Muñiz MT, et al. Low volume and high concentration of local anesthetic is more efficacious than high volume and low concentration in Labat's sciatic nerve block: a prospective, randomized comparison. Anesth. Analg. 2008;107:2085–2088. doi: 10.1213/ane.0b013e318186641d.
    1. Yang S, Abrahams MS, Hurn PD, Grafe MR, Kirsch JR. Local anesthetic Schwann cell toxicity is time and concentration-dependent. Reg. Anesth. Pain Med. 2011;36:444. doi: 10.1097/AAP.0b013e318228c835.
    1. Piangatelli C, et al. Levobupivacaine and ropivacaine in the infraclavicular brachial plexus block. Minerva Anestesiol. 2006;72:217–221.
    1. Mageswaran R, Choy YC. Comparison of 0.5% ropivacaine and 0.5% levobupivacaine for infraclavicular brachial plexus block. Med. J. Malaysia. 2010;65:300–303.
    1. Li A, et al. Ropivacaine versus levobupivacaine in peripheral nerve block: a PRISMA-compliant meta-analysis of randomized controlled trials. Medicine (Baltimore) 2017 doi: 10.1097/MD.0000000000006551.
    1. Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth. Prog. 2012;59:90–101. doi: 10.2344/0003-3006-59.2.90.
    1. Leone S, Di Cianni S, Casati A, Fanelli G. Pharmacology, toxicology, and clinical use of new long acting local anesthetics, ropivacaine and levobupivacaine. Acta Biomed. 2008;79:92–105.
    1. Casati A, et al. Interscalene brachial plexus anesthesia and analgesia for open shoulder surgery: a randomized, double-blinded comparison between levobupivacaine and ropivacaine. Anesth. Analg. 2003;96:253–259. doi: 10.1097/00000539-200301000-00051.
    1. Fournier R, Faust A, Chassot O, Gamulin Z. Levobupivacaine 0.5% provides longer analgesia after sciatic nerve block using the Labat approach than the same dose of ropivacaine in foot and ankle surgery. Anesth. Analg. 2010;110:1486–1489. doi: 10.1213/ANE.0b013e3181d3e80b.
    1. Bräu ME, Branitzki P, Olschewski A, Vogel W, Hempelmann G. Block of neuronal tetrodotoxin-resistant Na+ currents by stereoisomers of piperidine local anesthetics. Anesth. Analg. 2000;91:1499–1505. doi: 10.1097/00000539-200012000-00038.
    1. Cox B, Durieux M, Marcus M. Toxicity of local anaesthetics. Best Pract. Res. Clin. Anaesthesiol. 2003;17:111–136. doi: 10.1053/bean.2003.0275.
    1. Mosaffa, F. et al. Do the concentration and volume of local anesthetics affect the onset and success of infraclavicular anesthesia? Anesthesiol. Pain Med.5, e23963. 10.5812/aapm.23963v2 (2015).
    1. Eng HC, Ghosh SM, Chin KJ. Practical use of local anesthetics in regional anesthesia. Curr. Opin. Anaesthesiol. 2014;27:382–387. doi: 10.1097/ACO.0000000000000091.
    1. Rathod H, Parikh H, Upadhayaya R. Comparative study of 0.375% bupivacaine and 0.375% ropivacaine in brachial plexus block via supraclavicular approach. Int. J. Biomed. Res. 2015;6:77. doi: 10.7439/ijbr.v6i2.1601.
    1. Wank W, Büttner J, Maier KR, Emanuelson B-M, Selander D. Pharmacokinetics and efficacy of 40 mL ropivacaine 7.5 mg/mL (300 mg), for axillary brachial plexus block—an open pilot study. Eur. J. Drug Metab. Pharmacokinet. 2002;27:53–59. doi: 10.1007/BF03190406.
    1. Baskan S, et al. Comparison of 0.25% levobupivacaine and 0.25% bupivacaine for posterior approach interscalene brachial plexus block. J. Anesth. 2010;24:38–42. doi: 10.1007/s00540-009-0846-0.
    1. Joseph RS, Jr, McDonald SB. Facilitating the onset of regional anesthetic blocks. Tech. Reg. Anesth. Pain Manag. 2004;8:110–113. doi: 10.1053/j.trap.2004.08.001.
    1. Cuvillon P, et al. A comparison of the pharmacodynamics and pharmacokinetics of bupivacaine, ropivacaine (with epinephrine) and their equal volume mixtures with lidocaine used for femoral and sciatic nerve blocks: a double-blind randomized study. Anesth. Analg. 2009;108:641–649. doi: 10.1213/ane.0b013e31819237f8.
    1. Mets B, Janicki PK, James MF, Erskine R, Sasman B. Lidocaine and bupivacaine cardiorespiratory toxicity is additive: a study in rats. Anesth. Analg. 1992;75:611–614. doi: 10.1213/00000539-199210000-00026.
    1. Vazin M, et al. Low-volume brachial plexus block providing surgical anesthesia for distal arm surgery comparing supraclavicular, infraclavicular, and axillary approach: a randomized observer blind trial. Biomed. Res. Int. 2016;2016:7094121. doi: 10.1155/2016/7094121.
    1. Blanco AFG, et al. Retroclavicular versus infraclavicular block for brachial plexus anesthesia: a multi-centric randomized trial. BMC Anesthesiol. 2019;19:193. doi: 10.1186/s12871-019-0868-6.
    1. Kavrut Ozturk N, Kavakli AS. Comparison of the coracoid and retroclavicular approaches for ultrasound-guided infraclavicular brachial plexus block. J. Anesth. 2017;31:572–578. doi: 10.1007/s00540-017-2359-6.
    1. Songthamwat B, Karmakar MK, Li JW, Samy W, Mok LYH. Ultrasound-guided infraclavicular brachial plexus block: prospective randomized comparison of the lateral sagittal and costoclavicular approach. Reg. Anesth. Pain Med. 2018;43:825–831. doi: 10.1097/aap.0000000000000822.
    1. Sinha C, Kumar N, Kumar A, Kumar A, Kumar A. Comparative evaluation of two approaches of infraclavicular brachial plexus block for upper-limb surgeries. Saudi J. Anaesth. 2019;13:35–39. doi: 10.4103/sja.SJA_737_17.
    1. Bharti N, Bhardawaj N, Wig J. Comparison of ultrasound-guided supraclavicular, infraclavicular and below-C6 interscalene brachial plexus block for upper limb surgery: a randomised, observer-blinded study. Anaesth. Intensive Care. 2015;43:468–472. doi: 10.1177/0310057x1504300408.
    1. Abhinaya RJ, Venkatraman R, Matheswaran P, Sivarajan G. A randomised comparative evaluation of supraclavicular and infraclavicular approaches to brachial plexus block for upper limb surgeries using both ultrasound and nerve stimulator. Indian J. Anaesth. 2017;61:581–586. doi: 10.4103/ija.IJA_402_16.
    1. Rodriguez J, Barcena M, Taboada-Muniz M, Lagunilla J, Alvarez J. A comparison of single versus multiple injections on the extent of anesthesia with coracoid infraclavicular brachial plexus block. Anesth. Analg. 2004;99:1225–1230. doi: 10.1213/01.Ane.0000131724.73956.8e.
    1. Rodríguez J, Bárcena M, Lagunilla J, Alvarez J. Increased success rate with infraclavicular brachial plexus block using a dual-injection technique. J. Clin. Anesth. 2004;16:251–256. doi: 10.1016/j.jclinane.2003.08.006.
    1. Farrar JT, Young JP, Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149–158. doi: 10.1016/s0304-3959(01)00349-9.

Source: PubMed

3
Subskrybuj