Neural Oscillations and the Initiation of Voluntary Movement

Samuel Armstrong, Martin V Sale, Ross Cunnington, Samuel Armstrong, Martin V Sale, Ross Cunnington

Abstract

The brain processes involved in the planning and initiation of voluntary action are of great interest for understanding the relationship between conscious awareness of decisions and the neural control of movement. Voluntary motor behavior has generally been considered to occur when conscious decisions trigger movements. However, several studies now provide compelling evidence that brain states indicative of forthcoming movements take place before a person becomes aware of a conscious decision to act. While such studies have created much debate over the nature of 'free will,' at the very least they suggest that unconscious brain processes are predictive of forthcoming movements. Recent studies suggest that slow changes in neuroelectric potentials may play a role in the timing of movement onset by pushing brain activity above a threshold to trigger the initiation of action. Indeed, recent studies have shown relationships between the phase of low frequency oscillatory activity of the brain and the onset of voluntary action. Such studies, however, cannot determine whether this underlying neural activity plays a causal role in the initiation of movement or is only associated with the intentional behavior. Non-invasive transcranial alternating current brain stimulation can entrain neural activity at particular frequencies in order to assess whether underlying brain processes are causally related to associated behaviors. In this review, we examine the evidence for neural coding of action as well as the brain states prior to action initiation and discuss whether low frequency alternating current brain stimulation could influence the timing of a persons' decision to act.

Keywords: conscious experience; decision making; free will; readiness potential; slow wave brain oscillations; transcranial alternating current stimulation; voluntary movement.

References

    1. Alexander P., Schlegel A., Sinnott-Armstrong W., Roskies A. L., Wheatley T., Tse P. U. (2016). Readiness potentials driven by non-motoric processes. Conscious. Cogn. 39 38–47. 10.1016/j.concog.2015.11.011
    1. Ali M. M., Sellers K. K., Fröhlich F. (2013). Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 33 11262–11275. 10.1523/JNEUROSCI.5867-12.2013
    1. Anderson R. A., Buneo C. A. (2002). Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25 189–220. 10.1146/annurev.neuro.25.112701.142922
    1. Antal A., Boros K., Poreisz C., Chaieb L., Terney D., Paulus W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 1 97–105. 10.1016/j.brs.2007.10.001
    1. Baker K. S., Mattingley J. B., Chambers C. D., Cunnington R. (2011). Attention and the readiness for action. Neuropsychologia 49 3303–3313. 10.1016/j.neuropsychologia.2011.08.003
    1. Balduzzi D., Riedner B. A., Tononi G. (2008). A BOLD window into brain waves. Proc. Natl. Acad. Sci. U.S.A. 105 15641–15642. 10.1073/pnas.0808310105
    1. Ball T., Schreiber A., Feige B., Wagner M., Lücking C. H., Kristeva-Feige R. (1999). The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10 682–694. 10.1006/nimg.1999.0507
    1. Banks W. P., Isham E. A. (2009). We infer rather than perceive the moment we decided to act. Psychol. Sci. 20 17–21. 10.1111/j.1467-9280.2008.02254.x
    1. Benecke R., Meinck H. M., Conrad B. (1985). Rapid goal-directed elbow flexion movements: limitations of the speed control system due to neural constraints. Exp. Brain Res. 59 470–477. 10.1007/BF00261336
    1. Bennett M. R., Hacker P. M. S. (2003). Philosophical Foundations of Neuroscience, Vol. 79 Oxford: Blackwell.
    1. Blakemore S. J., Frith C. (2003). Self-awareness and action. Curr. Opin. Neurobiol. 13 219–224. 10.1016/S0959-4388(03)00043-6
    1. Bland N. S., Mattingley J. B., Sale M. V. (2018). No evidence for phase-specific effects of 40 Hz HD–tACS on multiple object tracking. Front. Psychol. 9:304. 10.3389/fpsyg.2018.00304
    1. Boly M., Balteau E., Schnakers C., Degueldre C., Moonen G., Luxen A., et al. (2007). Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. U.S.A. 104 12187–12192. 10.1073/pnas.0611404104
    1. Bozzacchi C., Giusti M. A., Pitzalis S., Spinelli D., Di Russo F. (2012). Similar cerebral motor plans for real and virtual actions. PLoS One 7:e47783. 10.1371/journal.pone.0047783
    1. Bozzacchi C., Spinelli D., Pitzalis S., Giusti M. A., Di Russo F. (2014). I know what I will see: action-specific motor preparation activity in a passive observation task. Soc. Cogn. Affect. Neurosci. 10 783–789. 10.1093/scan/nsu115
    1. Brittain J. S., Probert-Smith P., Aziz T. Z., Brown P. (2013). Tremor suppression by rhythmic transcranial current stimulation. Curr. Biol. 23 436–440. 10.1016/j.cub.2013.01.068
    1. Brunia C. H. M. (1988). Movement and stimulus preceding negativity. Biol. Psychol. 26 165–178. 10.1016/0301-0511(88)90018-X
    1. Buzsáki G., Draguhn A. (2004). Neuronal oscillations in cortical networks. Science 304 1926–1929. 10.1126/science.1099745
    1. Cancelli A., Cottone C., Zito G., Di Giorgio M., Pasqualetti P., Tecchio F. (2015). Cortical inhibition and excitation by bilateral transcranial alternating current stimulation. Restor. Neurol. Neurosci. 33 105–114. 10.3233/RNN-140411
    1. Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., et al. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313 1626–1628. 10.1126/science.1128115
    1. Cecere R., Rees G., Romei V. (2015). Individual differences in alpha frequency drive crossmodal illusory perception. Curr. Biol. 25 231–235. 10.1016/j.cub.2014.11.034
    1. Cheyne D., Bells S., Ferrari P., Gaetz W., Bostan A. C. (2008). Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage 42 332–342. 10.1016/j.neuroimage.2008.04.178
    1. Combrisson E., Perrone-Bertolotti M., Soto J. L., Alamian G., Kahane P., Lachaux J. P., et al. (2017). From intentions to actions: neural oscillations encode motor processes through phase, amplitude and phase-amplitude coupling. Neuroimage 147 473–487. 10.1016/j.neuroimage.2016.11.042
    1. Cunnington R., Iansek R., Johnson K. A., Bradshaw J. L. (1997). Movement-related potentials in Parkinson’s disease. Motor imagery and movement preparation. Brain 120 1339–1353. 10.1093/brain/120.8.1339
    1. Cunnington R., Windischberger C., Deecke L., Moser E. (2002). The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15 373–385. 10.1006/nimg.2001.0976
    1. Cunnington R., Windischberger C., Deecke L., Moser E. (2003). The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20 404–412. 10.1016/j.neuroimage.2016.11.042
    1. Cunnington R., Windischberger C., Moser E. (2005). Premovement activity of the pre-supplementary motor area and the readiness for action: studies of time-resolved event-related functional MRI. Hum. Mov. Sci. 24 644–656. 10.1016/j.humov.2005.10.001
    1. De Morree H. M., Klein C., Marcora S. M. (2012). Perception of effort reflects central motor command during movement execution. Psychophysiology 49 1242–1253. 10.1111/j.1469-8986.2012.01399.x
    1. Debaere F., Swinnen S. P., Béatse E., Sunaert S., Van Hecke P., Duysens J. (2001). Brain areas involved in interlimb coordination: a distributed network. Neuroimage 14 947–958. 10.1006/nimg.2001.0892
    1. Deecke L., Grözinger B., Kornhuber H. H. (1976). Voluntary finger movement in man: cerebral potentials and theory. Biol. Cybern. 23 99–119. 10.1007/BF00336013
    1. Deecke L., Kornhuber H. H. (2003). “Human freedom, reasoned will, and the brain: the Bereitschaftspotential story,” in The Bereitschaftspotential, eds Jahanshahi M., Hallett M. (New York, NY: Kluwer Academic; ), 283–320.
    1. Deecke L., Scheid P., Kornhuber H. H. (1969). Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Exp. Brain Res. 7 158–168. 10.1007/BF00235441
    1. Deiber M. P., Honda M., Ibañez V., Sadato N., Hallett M. (1999). Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J. Neurophysiol. 81 3065–3077. 10.1152/jn.1999.81.6.3065
    1. Dennett D. C. (1984). I could not have done otherwise–so what? J. Philos. 81 553–565.
    1. Dennett D. C. (2015). Elbow Room: The Varieties of Free will Worth Wanting. Cambridge, MA: Massachusetts Institute of Technology Press.
    1. Di Russo F., Berchicci M., Bozzacchi C., Perri R. L., Pitzalis S., Spinelli D. (2017). Beyond the “Bereitschaftspotential”: action preparation behind cognitive functions. Neurosci. Biobehav. Rev. 78 57–81. 10.1016/j.neubiorev.2017.04.019
    1. Di Russo F., Incoccia C., Formisano R., Sabatini U., Zoccolotti P. (2005). Abnormal motor preparation in severe traumatic brain injury with good recovery. J. Neurotrauma 22 297–312. 10.1089/neu.2005.22.297
    1. Douglas Z. H., Maniscalco B., Hallett M., Wassermann E. M., He B. J. (2015). Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms. J. Neurosci. 35 7239–7255. 10.1523/JNEUROSCI.4894-14.2015
    1. Eagleman D. M., Peter U. T., Buonomano D., Janssen P., Nobre A. C., Holcombe A. O. (2005). Time and the brain: how subjective time relates to neural time. J. Neurosci. 25 10369–10371. 10.1523/JNEUROSCI.3487-05.2005
    1. Eccles J. C. (1985). Mental summation: the timing of voluntary intentions by cortical activity. Behav. Brain Sci. 8 542–543. 10.1017/S0140525X00044952
    1. Eimer M. (1998). The lateralized readiness potential as an on-line measure of central response activation processes. Behav. Res. Methods Instrum. Comput. 30 146–156. 10.3758/BF03209424
    1. Engel A. K., Fries P., Singer W. (2001). Dynamic predictions: oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2 704–716. 10.1038/35094565
    1. Feurra M., Bianco G., Santarnecchi E., Del Testa M., Rossi A., Rossi S. (2011). Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J. Neurosci. 31 12165–12170. 10.1523/JNEUROSCI.0978-11.2011
    1. Filmer H. L., Dux P. E., Mattingley J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 37 742–753. 10.1016/j.tins.2014.08.003
    1. Fox M. D., Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8 700–711. 10.1038/nrn2201
    1. Fransson P. (2006). How default is the default mode of brain function: further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44 2836–2845. 10.1016/j.neuropsychologia.2006.06.017
    1. Freeman W. J., Burke B. C., Holmes M. D. (2003). Aperiodic phase re-setting in scalp EEG of beta–gamma oscillations by state transitions at alpha–theta rates. Hum. Brain Mapp. 19 248–272. 10.1002/hbm.10120
    1. Freude G., Ullsperger P., Krüger H., Pietschmann M. (1988). The Bereitschaftspotential in preparation to mental activities. Int. J. Psychophysiol. 6 291–297. 10.1016/0167-8760(88)90016-5
    1. Fried I., Mukamel R., Kreiman G. (2011). Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69 548–562. 10.1016/j.neuron.2010.11.045
    1. Garipelli G., Chavarriaga R., del R., Millán J. (2013). Single trial analysis of slow cortical potentials: a study on anticipation related potentials. J. Neural Eng. 10:036014. 10.1088/1741-2560/10/3/036014
    1. Gerloff C., Corwell B., Chen R., Hallett M., Cohen L. G. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120 1587–1602. 10.1093/brain/120.9.1587
    1. Haggard P. (2008). Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9 934–946. 10.1038/nrn2497
    1. Haggard P., Eimer M. (1999). On the relation between brain potentials and the awareness of voluntary movements. Exp. Brain Res. 126 128–133. 10.1007/s002210050722
    1. Hallett M. (2016). Physiology of free will. Ann. Neurol. 80 5–12. 10.1002/ana.24657
    1. Hamel-Thibault A., Thénault F., Whittingstall K., Bernier P. M. (2018). Delta-band oscillations in motor regions predict hand selection for reaching. Cereb. Cortex 28 574–584. 10.1093/cercor/bhw392
    1. Hari R. (2006). Action–perception connection and the cortical mu rhythm. Prog. Brain Res. 159 253–260. 10.1016/S0079-6123(06)59017-X
    1. He B. J., Zempel J. M., Snyder A. Z., Raichle M. E. (2010). The temporal structures and functional significance of scale-free brain activity. Neuron 66 353–369. 10.1016/j.neuron.2010.04.020
    1. Helfrich R. F., Schneider T. R., Rach S., Trautmann-Lengsfeld S. A., Engel A. K., Herrmann C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 24 333–339. 10.1016/j.cub.2013.12.041
    1. Herwig U., Abler B., Walter H., Erk S. (2007). Expecting unpleasant stimuli–an fMRI study. Psychiatry Res. 154 1–12. 10.1016/j.pscychresns.2006.02.007
    1. Hesselmann G., Kell C. A., Eger E., Kleinschmidt A. (2008). Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc. Natl. Acad. Sci. U.S.A. 105 10984–10989. 10.1073/pnas.0712043105
    1. Hirao T., Murphy T. I., Masaki H. (2016). Stimulus-preceding negativity represents a conservative response tendency. Neuroreport 27 80–84. 10.1097/WNR.0000000000000495
    1. Isler J. R., Grieve P. G., Czernochowski D., Stark R. I., Friedman D. (2008). Cross-frequency phase coupling of brain rhythms during the orienting response. Brain Res. 1232 163–172. 10.1016/j.brainres.2008.07.030
    1. Jahanashahi M., Jenkins I. H., Brown R. G., Marsden C. D., Passingham R. E., Brooks D. J. (1995). Self-initiated versus externally triggered movements: an investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118 913–933. 10.1093/brain/118.4.913
    1. Jahanshahi M., Hallett M. (eds) (2003). The Bereitschaftspotential: Movement-Related Cortical Potentials. New York, NY: Kluwer Academic; 10.1007/978-1-4615-0189-3
    1. Jensen O., Gips B., Bergmann T. O., Bonnefond M. (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 37 357–369. 10.1016/j.tins.2014.04.001
    1. Jo H. G., Hinterberger T., Wittmann M., Borghardt T. L., Schmidt S. (2013). Spontaneous EEG fluctuations determine the readiness potential: is preconscious brain activation a preparation process to move? Exp. Brain Res. 231 495–500. 10.1007/s00221-013-3713-z
    1. Joundi R. A., Jenkinson N., Brittain J. S., Aziz T. Z., Brown P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Curr. Biol. 22 403–407. 10.1016/j.cub.2012.01.024
    1. Jurkiewicz M. T., Gaetz W. C., Bostan A. C., Cheyne D. (2006). Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage 32 1281–1289. 10.1016/j.neuroimage.2006.06.005
    1. Kajihara T., Anwar M. N., Kawasaki M., Mizuno Y., Nakazawa K., Kitajo K. (2015). Neural dynamics in motor preparation: from phase-mediated global computation to amplitude-mediated local computation. Neuroimage 118 445–455. 10.1016/j.neuroimage.2015.05.032
    1. Keller I., Heckhausen H. (1990). Readiness potentials preceding spontaneous motor acts: voluntary vs. involuntary control. Electroencephalogr. Clin. Neurophysiol. 76 351–361. 10.1016/0013-4694(90)90036-J
    1. Khatoun A., Breukers J., de Beeck S. O., Nica I. G., Aerts J. M., Seynaeve L., et al. (2018). Using high-amplitude and focused transcranial alternating current stimulation to entrain physiological tremor. Sci. Rep. 8:4927. 10.1038/s41598-018-23290-w
    1. Kirchner W. K. (1958). Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55 352–358. 10.1037/h0043688
    1. Kitamura J. I., Shibasaki H., Takagi A., Nabeshima H., Yamaguchi A. (1993). Enhanced negative slope of cortical potentials before sequential as compared with simultaneous extensions of two fingers. Electroencephalogr. Clin. Neurophysiol. 86 176–182. 10.1016/0013-4694(93)90005-G
    1. Klemm W. R. (2010). Free will debates: simple experiments are not so simple. Adv. Cogn. Psychol. 6 47–65. 10.2478/v10053-008-0076-2
    1. Kornhuber H. H., Deecke L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch. 284 1–17. 10.1007/BF00412364
    1. Kornhuber H. H., Deecke L. (1990). Readiness for movement – The Bereitschaftspotential-story. Curr. Cont. Life Sci. 33:14.
    1. Kotchoubey B. (2012). Why are You Free?: Neurobiology and Psychology of Voluntary Action. Hauppauge, NY: Nova Science Publishers.
    1. Krause V., Meier A., Dinkelbach L., Pollok B. (2016). Beta band transcranial alternating (tACS) and direct current stimulation (tDCS) applied after initial learning facilitate retrieval of a motor sequence. Front. Behav. Neurosci. 10:4. 10.3389/fnbeh.2016.00004
    1. Lakatos P., Chen C. M., O’Connell M. N., Mills A., Schroeder C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53 279–292. 10.1016/j.neuron.2006.12.011
    1. Lakatos P., Karmos G., Mehta A. D., Ulbert I., Schroeder C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320 110–113. 10.1126/science.1154735
    1. Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., Schroeder C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94 1904–1911. 10.1152/jn.00263.2005
    1. Lang W. (2003). “Surface recordings of the Bereitschaftspotential in normals,” in The Bereitschaftspotential, eds Jahanshahi M., Hallet M. (New York, NY: Kluwer Academic; ), 19–34.
    1. Lau H. C., Rogers R. D., Ramnani N., Passingham R. E. (2004). Willed action and attention to the selection of action. Neuroimage 21 1407–1415. 10.1016/j.neuroimage.2003.10.034
    1. Libet B. (1999). Do we have free will? J. Conscious. Stud. 6 47–57.
    1. Libet B., Gleason C. A., Wright E. W., Pearl D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential) the unconscious initiation of a freely voluntary act. Brain 106 623–642. 10.1093/brain/106.3.623
    1. Linkenkaer-Hansen K., Nikulin V. V., Palva S., Ilmoniemi R. J., Palva J. M. (2004). Prestimulus oscillations enhance psychophysical performance in humans. J. Neurosci. 24 10186–10190. 10.1523/JNEUROSCI.2584-04.2004
    1. Luppino G., Rizzolatti G. (2000). The organization of the frontal motor cortex. Physiology 15 219–224. 10.1152/physiologyonline.2000.15.5.219
    1. Mathewson K. E., Gratton G., Fabiani M., Beck D. M., Ro T. (2009). To see or not to see: prestimulus α phase predicts visual awareness. J. Neurosci. 29 2725–2732. 10.1523/JNEUROSCI.3963-08.2009
    1. Mehta A. R., Brittain J. S., Brown P. (2014). The selective influence of rhythmic cortical versus cerebellar transcranial stimulation on human physiological tremor. J. Neurosci. 34 7501–7508. 10.1523/JNEUROSCI.0510-14.2014
    1. Mehta A. R., Pogosyan A., Brown P., Brittain J. S. (2015). Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor. Brain Stimul. 8 260–268. 10.1016/j.brs.2014.11.003
    1. Montemurro M. A., Rasch M. J., Murayama Y., Logothetis N. K., Panzeri S. (2008). Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr. Biol. 18 375–380. 10.1016/j.cub.2008.02.023
    1. Murakami M., Vicente M. I., Costa G. M., Mainen Z. F. (2014). Neural antecedents of self-initiated actions in secondary motor cortex. Nat. Neurosci. 17 1574–1582. 10.1038/nn.3826
    1. Neuling T., Rach S., Wagner S., Wolters C. H., Herrmann C. S. (2012). Good vibrations: oscillatory phase shapes perception. Neuroimage 63 771–778. 10.1016/j.neuroimage.2012.07.024
    1. Nguyen V. T., Breakspear M., Cunnington R. (2014). Reciprocal interactions of the SMA and cingulate cortex sustain premovement activity for voluntary actions. J. Neurosci. 34 16397–16407. 10.1523/JNEUROSCI.2571-14.2014
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1 206–223. 10.1016/j.brs.2008.06.004
    1. Ozen S., Sirota A., Belluscio M. A., Anastassiou C. A., Stark E., Koch C., et al. (2010). Transcranial electric stimulation entrains cortical neuronal populations in rats. J. Neurosci. 30 11476–11485. 10.1523/JNEUROSCI.5252-09.2010
    1. Palva J. M., Palva S., Kaila K. (2005). Phase synchrony among neuronal oscillations in the human cortex. J. Neurosci. 25 3962–3972. 10.1523/JNEUROSCI.4250-04.2005
    1. Palva S., Palva J. M. (2007). New vistas for α-frequency band oscillations. Trends Neurosci. 30 150–158. 10.1016/j.tins.2007.02.001
    1. Paulus W. (2011). Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychol. Rehabil. 21 602–617. 10.1080/09602011.2011.557292
    1. Pfurtscheller G. (1992). Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Clin. Neurophysiol. 83 62–69. 10.1016/0013-4694(92)90133-3
    1. Pfurtscheller G., Aranibar A. (1977). Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol. 42 817–826. 10.1016/0013-4694(77)90235-8
    1. Pfurtscheller G., Brunner C., Schlögl A., Da Silva F. L. (2006). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31 153–159. 10.1016/j.neuroimage.2005.12.003
    1. Pfurtscheller G., Lopes Da Silva F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110 1842–1857. 10.1016/S1388-2457(99)00141-8
    1. Pfurtscheller G., Neuper C. (1992). Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport 3 1057–1060. 10.1097/00001756-199212000-00006
    1. Pfurtscheller G., Neuper C. (2003). “Movement and ERD/ERS,” in The Bereitschaftspotential: Movement Related Cortical Potentials, eds Jahanshahi M., Hallett M. (New York, NY: Kluwer Academic; ), 191–205. 10.1007/978-1-4615-0189-3_12
    1. Pogosyan A., Gaynor L. D., Eusebio A., Brown P. (2009). Boosting cortical activity at beta-band frequencies slows movement in humans. Curr. Biol. 19 1637–1641. 10.1016/j.cub.2009.07.074
    1. Polanía R., Nitsche M. A., Korman C., Batsikadze G., Paulus W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22 1314–1318. 10.1016/j.cub.2012.05.021
    1. Pollok B., Boysen A. C., Krause V. (2015). The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning. Behav. Brain Res. 293 234–240. 10.1016/j.bbr.2015.07.04
    1. Praamstra P., Stegeman D. F., Horstink M. W. I. M., Cools A. R. (1996). Dipole source analysis suggests selective modulation of the supplementary motor area contribution to the readiness potential. Electroencephalogr. Clin. Neurophysiol. 98 468–477. 10.1016/0013-4694(96)95643-6
    1. Priori A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol. 114 589–595. 10.1016/S1388-2457(02)00437-6
    1. Radder H., Meynen G. (2013). Does the brain “initiate” freely willed processes? A philosophy of science critique of Libet-type experiments and their interpretation. Theory Psychol. 23 3–21. 10.1177/0959354312460926
    1. Rice D. M., Hagstrom E. C. (1989). Some evidence in support of a relationship between human auditory signal-detection performance and the phase of the alpha cycle. Percept. Mot. Skills 69 451–457. 10.2466/pms.1989.69.2.451
    1. Richards J. E. (2003). Cortical sources of event-related potentials in the prosaccade and antisaccade task. Psychophysiology 40 878–894. 10.1111/1469-8986.00106
    1. Rigoni D., Brass M., Sartori G. (2010). Post-action determinants of the reported time of conscious intentions. Front. Hum. Neurosci. 4:38. 10.3389/fnhum.2010.00038
    1. Rigoni D., Kühn S., Sartori G., Brass M. (2011). Inducing disbelief in free will alters brain correlates of preconscious motor preparation: the brain minds whether we believe in free will or not. Psychol. Sci. 22 613–618. 10.1177/0956797611405680
    1. Roland P. E. (1984). Organization of motor control by the normal human brain. Hum. Neurobiol. 2 205–216.
    1. Roland P. E., Larsen B., Lassen N. A., Skinhoj E. (1980). Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol. 43 118–136. 10.1152/jn.1980.43.1.118
    1. Romo R., Schultz W. (1987). Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex. Exp. Brain Res. 67 656–662. 10.1007/BF00247297
    1. Rossini P. M., Burke D., Chen R., Cohen L. G., Daskalakis Z., Di Iorio R., et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 126 1071–1107. 10.1016/j.clinph.2015.02.001
    1. Saigle V., Dubljević V., Racine E. (2018). The impact of a landmark neuroscience study on free will: a qualitative analysis of articles using Libet and colleagues’ methods. AJOB Neurosci. 9 29–41. 10.1080/21507740.2018.1425756
    1. Saleh M., Reimer J., Penn R., Ojakangas C. L., Hatsopoulos N. G. (2010). Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron 65 461–471. 10.1016/j.neuron.2010.02.001
    1. Sauseng P., Klimesch W., Gruber W. R., Birbaumer N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40 308–317. 10.1016/j.neuroimage.2007.11.032
    1. Schlegel A., Alexander P., Sinnott-Armstrong W., Roskies A., Peter U. T., Wheatley T. (2013). Barking up the wrong free: readiness potentials reflect processes independent of conscious will. Exp. Brain Res. 229 329–335. 10.1007/s00221-013-3479-3
    1. Schmidt S., Jo H. G., Wittmann M., Hinterberger T. (2016). ‘Catching the waves’–slow cortical potentials as moderator of voluntary action. Neurosci. Biobehav. Rev. 68 639–650. 10.1016/j.neubiorev.2016.06.023
    1. Schultze-Kraft M., Birman D., Rusconi M., Allefeld C., Görgen K., Dähne S., et al. (2016). The point of no return in vetoing self-initiated movements. Proc. Natl. Acad. Sci. U.S.A. 113 1080–1085. 10.1073/pnas.1513569112
    1. Schurger A. (2018). Specific relationship between the shape of the readiness potential, subjective decision time, and waiting time predicted by an accumulator model with temporally autocorrelated input noise. eNeuro 5:ENEURO.0302-17.2018 10.1523/ENEURO.0302-17.2018
    1. Schurger A., Sitt J. D., Dehaene S. (2012). An accumulator model for spontaneous neural activity prior to self-initiated movement. Proc. Natl. Acad. Sci. U.S.A. 109 E2904–E2913. 10.1073/pnas.1210467109
    1. Schutter D. J., Hortensius R. (2011). Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul. 4 97–103. 10.1016/j.brs.2010.07.002
    1. Shibasaki H., Hallett M. (2006). What is the Bereitschaftspotential? Clin. Neurophysiol. 117 2341–2356. 10.1016/j.clinph.2006.04.025
    1. Simonetta M., Clanet M., Rascol O. (1991). Bereitschaftspotential in a simple movement or in a motor sequence starting with the same simple movement. Clin. Neurophysiol. 81 129–134. 10.1016/0168-5597(91)90006-J
    1. Sirigu A., Daprati E., Ciancia S., Giraux P., Nighoghossian N., Posada A., et al. (2004). Altered awareness of voluntary action after damage to the parietal cortex. Nat. Neurosci. 7 80–84. 10.1038/nn1160
    1. Slobounov S., Hallett M., Newell K. M. (2004). Perceived effort in force production as reflected in motor-related cortical potentials. Clin. Neurophysiol. 115 2391–2402. 10.1016/j.clinph.2004.05.021
    1. Soon C. S., Brass M., Heinze H. J., Haynes J. D. (2008). Unconscious determinants of free decisions in the human brain. Nat. Neurosci. 11 543–545. 10.1038/nn.2112
    1. Steriade M. (1997). Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb. Cortex 7 583–604. 10.1093/cercor/7.6.583
    1. Steriade M., Nuñez A., Amzica F. (1993a). A novel (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13 3252–3265. 10.1523/JNEUROSCI.13-08-03252.1993
    1. Steriade M., Nuñez A., Amzica F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13 3266–3283. 10.1523/JNEUROSCI.13-08-03266.1993
    1. Steriade M., Contreras D., Curró Dossi R., Nuñez A. (1993c). The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13 3284–3299. 10.1523/JNEUROSCI.13-08-03284.1993
    1. Tecce J. J. (1972). Contingent negative variation (CNV) and psychological processes in man. Psychol. Bull. 77 73–108. 10.1037/h0032177
    1. Tinbergen N. (1951). The Study of Instinct. New York, NY: Oxford University Press.
    1. Tunik E., Lo O. Y., Adamovich S. V. (2008). Transcranial magnetic stimulation to the frontal operculum and Supramarginal gyrus disrupts planning of outcome-based hand–object interactions. J. Neurosci. 28 14422–14427. 10.1523/JNEUROSCI.4734-08.2008
    1. van Wijk B., Beek P. J., Daffertshofer A. (2012). Neural synchrony within the motor system: what have we learned so far? Front. Hum. Neurosci. 6:252. 10.3389/fnhum.2012.00252
    1. Vanhatalo S., Palva J. M., Holmes M. D., Miller J. W., Voipio J., Kaila K. (2004). Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc. Natl. Acad. Sci. U.S.A. 101 5053–5057. 10.1073/pnas.0305375101
    1. VanRullen R., Busch N., Drewes J., Dubois J. (2011). Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Front. Psychol. 2:60. 10.3389/fpsyg.2011.00060
    1. Varela F., Lachaux J. P., Rodriguez E., Martinerie J. (2001). The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2 229–239. 10.1038/35067550
    1. Wach C., Krause V., Moliadze V., Paulus W., Schnitzler A., Pollok B. (2013). Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav. Brain Res. 241 1–6. 10.1016/j.bbr.2012.11.038
    1. Walter W. G., Cooper R., Aldridge V. J., McCallum W. C., Winter A. L. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203 380–384. 10.1038/203380a0
    1. Wegner D. M. (2003). The mind’s best trick: how we experience conscious will. Trends Cogn. Sci. 7 65–69. 10.1016/S1364-6613(03)00002-0
    1. Wegner D. M. (2004). Précis of the illusion of conscious will. Behav. Brain Sci. 27 649–659. 10.1017/S0140525X04000159
    1. Wheaton L. A., Shibasaki H., Hallett M. (2005a). Temporal activation pattern of parietal and premotor areas related to praxis movements. Clin. Neurophysiol. 116 1201–1212.
    1. Wheaton L. A., Yakota S., Hallett M. (2005b). Posterior parietal negativity preceding self-paced praxis movements. Exp. Brain Res. 163 535–539.
    1. Yazawa S., Ikeda A., Kunieda T., Ohara S., Mima T., Nagamine T., et al. (2000). Human presupplementary motor area is active before voluntary movement: subdural recording of Bereitschaftspotential from medial frontal cortex. Exp. Brain Res. 131 165–177. 10.1007/s002219900311

Source: PubMed

3
Subskrybuj