Immunotherapy for Esophageal Cancer: State-of-the Art in 2021

Hugo Teixeira Farinha, Antonia Digklia, Dimitrios Schizas, Nicolas Demartines, Markus Schäfer, Styliani Mantziari, Hugo Teixeira Farinha, Antonia Digklia, Dimitrios Schizas, Nicolas Demartines, Markus Schäfer, Styliani Mantziari

Abstract

The management of esophageal cancer (EC) has experienced manifold changes during the last decades. Centralization of EC treatment has been introduced in many countries, subsequently allowing the development of specialized high-volume centers. Minimal invasive surgery has replaced open surgery in many centers, whereas more potent systemic treatments have been introduced in clinical practice. Newer chemotherapy regimens increase long-term survival. Nevertheless, the overall survival of EC patients remains dismal for advanced tumor stages. In this direction, a wide range of targeted biologic agents (immunotherapy) is currently under assessment. Anti- Human Epidermal Growth Factor Receptor-2 (HER-2) monoclonal antibodies are used in HER2 (+) tumors, predominantly well-differentiated adenocarcinomas, and are currently assessed in the neoadjuvant setting (TRAP, INNOVATION trials). Immune checkpoint inhibitors Nivolumab (ATTRACTION-03) and pembrolizumab (KEYNOTE-181), have demonstrated a survival benefit compared with conventional chemotherapy in heavily pre-treated progressive disease. More recently, CheckMate-577 showed very promising results for nivolumab in a curative adjuvant setting, improving disease-free survival mainly for esophageal squamous cell carcinoma. Several ongoing trials are investigating novel targeted agents in the preoperative setting of locally advanced EC. In addition, other immunomodulatory approaches such as peptide vaccines and tumor infiltrating lymphocytes (TILs) are currently under development and should be increasingly integrated into clinical practice.

Keywords: esophageal adenocarcinoma; immunotherapy; oesophageal cancer; squamous cell cancer; tumor microenvironment.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015;65:87–108. doi: 10.3322/caac.21262.
    1. Ferlay J., Colombet M., Soerjomataram I., Dyba T., Randi G., Bettio M., Gavin A., Visser O., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer. 2018;103:356–387. doi: 10.1016/j.ejca.2018.07.005.
    1. Lordick F., Mariette C., Haustermans K., Obermannová R., Arnold D. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016;27:v50–v57. doi: 10.1093/annonc/mdw329.
    1. Högner A., Thuss-Patience P. Immune Checkpoint Inhibition in Oesophago-Gastric Carcinoma. Pharmaceuticals. 2021;14:151. doi: 10.3390/ph14020151.
    1. Lagergren J., Smyth E., Cunningham D., Lagergren P. Oesophageal cancer. Lancet. 2017;390:2383–2396. doi: 10.1016/S0140-6736(17)31462-9.
    1. Smyth E.C., Verheij M., Allum W., Cunningham D., Cervantes A., Arnold D., on behalf of the ESMO Guidelines Committee Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016;27:v38–v49. doi: 10.1093/annonc/mdw350.
    1. The Cancer Genome Atlas Research Network Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–175. doi: 10.1038/nature20805.
    1. Al-Batran S.-E., Homann N., Pauligk C., Goetze T.O., Meiler J., Kasper S., Kopp H.-G., Mayer F., Haag G.M., Luley K., et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet. 2019;393:1948–1957. doi: 10.1016/s0140-6736(18)32557-1.
    1. van Hagen P., Hulshof M.C.C.M., Van Lanschot J.J.B., Steyerberg E.W., van Berge Henegouwen M.I., Wijnhoven B.P.L., Richel D.J., Nieuwenhuijzen G.A.P., Hospers G.A.P., Bonenkamp J.J., et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012;366:2074–2084. doi: 10.1056/NEJMoa1112088.
    1. Lou F., Sima C.S., Adusumilli P.S., Bains M.S., Sarkaria I.S., Rusch V., Rizk N.P. Esophageal Cancer Recurrence Patterns and Implications for Surveillance. J. Thorac. Oncol. 2013;8:1558–1562. doi: 10.1097/01.JTO.0000437420.38972.fb.
    1. Mantziari S., Allemann P., Winiker M., Demartines N., Schäfer M. Locoregional Tumor Extension and Preoperative Smoking are Significant Risk Factors for Early Recurrence After Esophagectomy for Cancer. World J. Surg. 2017;42:2209–2217. doi: 10.1007/s00268-017-4422-8.
    1. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209. doi: 10.1038/nature13480.
    1. Lawrence M.S., Stojanov P., Polak P., Kryukov G.V., Cibulskis K., Sivachenko A., Carter S.L., Stewart C., Mermel C.H., Roberts S.A., et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–218. doi: 10.1038/nature12213.
    1. Shi T., Ma Y., Yu L., Jiang J., Shen S., Hou Y., Wang T. Cancer Immunotherapy: A Focus on the Regulation of Immune Checkpoints. Int. J. Mol. Sci. 2018;19:1389. doi: 10.3390/ijms19051389.
    1. Digklia A., Duran R., Homicsko K., Kandalaft L., Hocquelet A., Orcurto A., Coukos G., Denys A. Cancer Immunotherapy: A Simple Guide for Interventional Radiologists of New Therapeutic Approaches. Cardiovasc. Interv. Radiol. 2018;42:1221–1229. doi: 10.1007/s00270-018-2074-1.
    1. Whiteside T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27:5904–5912. doi: 10.1038/onc.2008.271.
    1. Chen K., Cheng G., Zhang F., Zhang N., Li D., Jin J., Wu J., Ying L., Mao W., Su D. Prognostic significance of programmed death-1 and programmed death-ligand 1 expression in patients with esophageal squamous cell carcinoma. Oncotarget. 2016;7:30772–30780. doi: 10.18632/oncotarget.8956.
    1. Masopust D., Schenkel J.M. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 2013;13:309–320. doi: 10.1038/nri3442.
    1. Schizas‡ D., Charalampakis‡ N., Kole C., Mylonas K.S., Katsaros I., Zhao M., A Ajani J., Psyrri A., Karamouzis M.V., Liakakos T. Immunotherapy for esophageal cancer: A 2019 update. Immunotherapy. 2020;12:203–218. doi: 10.2217/imt-2019-0153.
    1. Bonotto M., Garattini S.K., Basile D., Ongaro E., Fanotto V., Cattaneo M., Cortiula F., Iacono D., Cardellino G.G., Pella N., et al. Immunotherapy for gastric cancers: Emerging role and future perspectives. Expert Rev. Clin. Pharmacol. 2017;10:609–619. doi: 10.1080/17512433.2017.1313113.
    1. de Mello R.A., Veloso A.F., Catarina P.E., Nadine S., Antoniou G. Potential role of immunotherapy in advanced non-small-cell lung cancer. OncoTargets Ther. 2016;10:21–30. doi: 10.2147/OTT.S90459.
    1. Huang T.-X., Fu L. The immune landscape of esophageal cancer. Cancer Commun. 2019;39:1–13. doi: 10.1186/s40880-019-0427-z.
    1. Kulangara K., Hanks D.A., Waldroup S., Peltz L., Shah S., Roach C., Juco J.W., Emancipator K., Stanforth D. Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J. Clin. Oncol. 2017;35:e14589. doi: 10.1200/JCO.2017.35.15_suppl.e14589.
    1. Buchbinder E.I., Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. Cancer Clin. Trials. 2016;39:98–106. doi: 10.1097/COC.0000000000000239.
    1. Topalian S.L., Drake C.G., Pardoll D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 2012;24:207–212. doi: 10.1016/j.coi.2011.12.009.
    1. Mirjolet C., Charon-Barra C., Ladoire S., Arbez-Gindre F., Bertaut A., Ghiringhelli F., Leroux A., Peiffert D., Borg C., Bosset J.F., et al. Tumor lymphocyte immune response to preoperative radiotherapy in locally advanced rectal cancer: The LYMPHOREC study. OncoImmunology. 2017;7:e1396402. doi: 10.1080/2162402X.2017.1396402.
    1. Denkert C., Von Minckwitz G., Darb-Esfahani S., Lederer B., Heppner B.I., Weber K.E., Budczies J., Huober J., Klauschen F., Furlanetto J., et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19:40–50. doi: 10.1016/S1470-2045(17)30904-X.
    1. Sudo T., Nishida R., Kawahara A., Saisho K., Mimori K., Yamada A., Mizoguchi A., Kadoya K., Matono S., Mori N., et al. Clinical Impact of Tumor-Infiltrating Lymphocytes in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2017;24:3763–3770. doi: 10.1245/s10434-017-5796-4.
    1. Okadome K., Baba Y., Yagi T., Kiyozumi Y., Ishimoto T., Iwatsuki M., Miyamoto Y., Yoshida N., Watanabe M., Baba H. Prognostic Nutritional Index, Tumor-infiltrating Lymphocytes, and Prognosis in Patients with Esophageal Cancer. Ann. Surg. 2020;271:693–700. doi: 10.1097/SLA.0000000000002985.
    1. Stein A.V., Dislich B., Blank A., Guldener L., Kröll D., Seiler C.A., Langer R. High intratumoural but not peritumoural inflammatory host response is associated with better prognosis in primary resected oesophageal adenocarcinomas. Pathology. 2016;49:30–37. doi: 10.1016/j.pathol.2016.10.005.
    1. Zingg U., Montani M., Frey D., Dirnhofer S., Esterman A., Went P., Oertli D. Tumour-infiltrating lymphocytes and survival in patients with adenocarcinoma of the oesophagus. Eur. J. Surg. Oncol. (EJSO) 2010;36:670–677. doi: 10.1016/j.ejso.2010.05.012.
    1. Chang L., Chang M., Chang H.M., Chang F. Microsatellite Instability: A Predictive Biomarker for Cancer Immunotherapy. Appl. Immunohistochem. Mol. Morphol. 2018;26:e15–e21. doi: 10.1097/PAI.0000000000000575.
    1. Pietrantonio F., Miceli R., Raimondi A., Kim Y.W., Kang W.K., Langley R.E., Choi Y.Y., Kim K.-M., Nankivell M.G., Morano F., et al. Individual Patient Data Meta-Analysis of the Value of Microsatellite Instability As a Biomarker in Gastric Cancer. J. Clin. Oncol. 2019;37:3392–3400. doi: 10.1200/JCO.19.01124.
    1. Janjigian Y.Y., Sanchez-Vega F., Jonsson P., Chatila W.K., Hechtman J., Ku G.Y., Riches J.C., Tuvy Y., Kundra R., Bouvier N., et al. Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. Cancer Discov. 2017;8:49–58. doi: 10.1158/-17-0787.
    1. Hewitt L., Inam I., Saito Y., Yoshikawa T., Quaas A., Hoelscher A., Bollschweiler E., Fazzi G., Melotte V., Langley R., et al. Epstein-Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: A large multi-centre study. Eur. J. Cancer. 2018;94:104–114. doi: 10.1016/j.ejca.2018.02.014.
    1. Shitara K., Özgüroglu M., Bang Y.-J., Di Bartolomeo M., Mandalà M., Ryu M.-H., Fornaro L., Olesinski T., Caglevic C., Chung H., et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392:123–133. doi: 10.1016/S0140-6736(18)31257-1.
    1. Fuchs C.S., Doi T., Jang R.W., Muro K., Satoh T., Machado M., Sun W., Jalal S.I., Shah M.A., Metges J.-P., et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer. JAMA Oncol. 2018;4:e180013. doi: 10.1001/jamaoncol.2018.0013.
    1. Alsina M., Moehler M., Lorenzen S. Immunotherapy of Esophageal Cancer: Current Status, Many Trials and Innovative Strategies. Oncol. Res. Treat. 2018;41:266–271. doi: 10.1159/000488120.
    1. Kudo T., Hamamoto Y., Kato K., Ura T., Kojima T., Tsushima T., Hironaka S., Hara H., Satoh T., Iwasa S., et al. Nivolumab treatment for oesophageal squamous-cell carcinoma: An open-label, multicentre, phase 2 trial. Lancet Oncol. 2017;18:631–639. doi: 10.1016/S1470-2045(17)30181-X.
    1. Doi T., Piha-Paul S., Jalal S.I., Saraf S., Lunceford J., Koshiji M., Bennouna J. Safety and Antitumor Activity of the Anti–Programmed Death-1 Antibody Pembrolizumab in Patients With Advanced Esophageal Carcinoma. J. Clin. Oncol. 2018;36:61–67. doi: 10.1200/JCO.2017.74.9846.
    1. Sun J.-M., Shen L., Shah M.A., Enzinger P., Adenis A., Doi T., Kojima T., Metges J.-P., Li Z., Kim S.-B., et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet. 2021;398:759–771. doi: 10.1016/S0140-6736(21)01234-4.
    1. Kojima T., Shah M.A., Muro K., Francois E., Adenis A., Hsu C.-H., Doi T., Moriwaki T., Kim S.-B., Lee S.-H., et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020;38:4138–4148. doi: 10.1200/JCO.20.01888.
    1. Kato K., Doki Y., Ura T., Hamamoto Y., Kojima T., Tsushima T., Hironaka S., Hara H., Satoh T., Iwasa S., et al. Nivolumab in advanced esophageal squamous cell carcinoma (ATTRACTION-1/ONO-4538-07): Minimum of five-year follow-up. J. Clin. Oncol. 2021;39:207. doi: 10.1200/JCO.2021.39.3_suppl.207.
    1. Kato K., Cho B.C., Takahashi M., Okada M., Lin C.-Y., Chin K., Kadowaki S., Ahn M.-J., Hamamoto Y., Doki Y., et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20:1506–1517. doi: 10.1016/S1470-2045(19)30626-6.
    1. Kelly R.J., Ajani J.A., Kuzdzal J., Zander T., Van Cutsem E., Piessen G., Mendez G., Feliciano J., Motoyama S., Lièvre A., et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021;384:1191–1203. doi: 10.1056/NEJMoa2032125.
    1. Janjigian Y.Y., Bendell J., Calvo E., Kim J.W., Ascierto P.A., Sharma P., Ott P.A., Peltola K., Jaeger D., Evans J., et al. CheckMate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer. J. Clin. Oncol. 2018;36:2836–2844. doi: 10.1200/JCO.2017.76.6212. Erratum in J. Clin. Oncol. 2019, 37, 443.
    1. Janjigian Y.Y., Shitara K., Moehler M., Garrido M., Salman P., Shen L., Wyrwicz L., Yamaguchi K., Skoczylas T., Bragagnoli A.C., et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet. 2021;3:27–40. doi: 10.1016/S0140-6736(21)00797-2.
    1. Thies S., Langer R. Tumor Regression Grading of Gastrointestinal Carcinomas after Neoadjuvant Treatment. Front. Oncol. 2013;3:262. doi: 10.3389/fonc.2013.00262.
    1. Stroes C.I., Schokker S., Creemers A., Molenaar R.J., Hulshof M.C., van der Woude S.O., Bennink R.J., Mathôt R.A., Krishnadath K.K., Punt C.J., et al. Phase II Feasibility and Biomarker Study of Neoadjuvant Trastuzumab and Pertuzumab With Chemoradiotherapy for Resectable Human Epidermal Growth Factor Receptor 2–Positive Esophageal Adenocarcinoma: TRAP Study. J. Clin. Oncol. 2020;38:462–471. doi: 10.1200/JCO.19.01814.
    1. Wagner A.D., Grabsch H.I., Mauer M., Marreaud S., Caballero C., Thuss-Patience P., Mueller L., Elme A., Moehler M.H., Martens U., et al. EORTC-1203-GITCG - the “INNOVATION”-trial: Effect of chemotherapy alone versus chemotherapy plus trastuzumab, versus chemotherapy plus trastuzumab plus pertuzumab, in the perioperative treatment of HER2 positive, gastric and gastroesophageal junction adenocarcinoma on pathologic response rate: A randomized phase II-intergroup trial of the EORTC-Gastrointestinal Tract Cancer Group, Korean Cancer Study Group and Dutch Upper GI-Cancer group. BMC Cancer. 2019;19:494. doi: 10.1186/s12885-019-5675-4.
    1. Al-Batran S.-E., Pauligk C., Hofheinz R., Lorenzen S., Wicki A., Siebenhuener A.R., Schenk M., Welslau M., Heuer V., Goekkurt E., et al. Perioperative atezolizumab in combination with FLOT versus FLOT alone in patients with resectable esophagogastric adenocarcinoma: DANTE, a randomized, open-label phase II trial of the German Gastric Group of the AIO and the SAKK. J. Clin. Oncol. 2019;37:TPS4142. doi: 10.1200/JCO.2019.37.15_suppl.TPS4142.
    1. Hendry S.A., Farnsworth R., Solomon B., Achen M., Stacker S., Fox S.B. The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment. Front. Immunol. 2016;7:621. doi: 10.3389/fimmu.2016.00621.
    1. Yamamoto K., Makino T., Sato E., Noma T., Urakawa S., Takeoka T., Yamashita K., Saito T., Tanaka K., Takahashi T., et al. Tumor-infiltrating M2 macrophage in pretreatment biopsy sample predicts response to chemotherapy and survival in esophageal cancer. Cancer Sci. 2020;111:1103–1112. doi: 10.1111/cas.14328.
    1. Sugimura K., Miyata H., Tanaka K., Takahashi T., Kurokawa Y., Yamasaki M., Nakajima K., Takiguchi S., Mori M., Doki Y. High infiltration of tumor-associated macrophages is associated with a poor response to chemotherapy and poor prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. J. Surg. Oncol. 2015;111:752–759. doi: 10.1002/jso.23881.
    1. Yagi T., Baba Y., Ishimoto T., Iwatsuki M., Miyamoto Y., Yoshida N., Watanabe M., Baba H. PD-L1 Expression, Tumor-infiltrating Lymphocytes, and Clinical Outcome in Patients with Surgically Resected Esophageal Cancer. Ann. Surg. 2019;269:471–478. doi: 10.1097/SLA.0000000000002616.
    1. Noble F., Mellows T., McCormick Matthews L.H., Bateman A.C., Harris S., Underwood T., Byrne J., Bailey I.S., Sharland D.M., Kelly J.J., et al. Tumour infiltrating lymphocytes correlate with improved survival in patients with oesophageal adenocarcinoma. Cancer Immunol. Immunother. 2016;65:651–662. doi: 10.1007/s00262-016-1826-5.
    1. Gao Y., Guo W., Geng X., Zhang Y., Zhang G., Qiu B., Tan F., Xue Q., Gao S., He J. Prognostic value of tumor-infiltrating lymphocytes in esophageal cancer: An updated meta-analysis of 30 studies with 5,122 patients. Ann. Transl. Med. 2020;8:822. doi: 10.21037/atm-20-151.
    1. Zingg U., Montani M., Frey D., Dirnhofer S., Went P., Oertli D. Influence of neoadjuvant radio-chemotherapy on tumor-infiltrating lymphocytes in squamous esophageal cancer. Eur. J. Surg. Oncol. (EJSO) 2009;35:1268–1272. doi: 10.1016/j.ejso.2009.07.002.
    1. Fontenot J.D., Gavin M.A., Rudensky A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003;4:330–336. doi: 10.1038/ni904.
    1. Wolf D., Wolf A.M., Rumpold H., Fiegl H., Zeimet A.G., Muller-Holzner E., Deibl M., Gastl G., Gunsilius E., Marth C. The Expression of the Regulatory T Cell–Specific Forkhead Box Transcription Factor FoxP3 Is Associated with Poor Prognosis in Ovarian Cancer. Clin. Cancer Res. 2005;11:8326–8331. doi: 10.1158/1078-0432.CCR-05-1244.
    1. Tsuchikawa T., Miyamoto M., Yamamura Y., Shichinohe T., Hirano S., Kondo S. The Immunological Impact of Neoadjuvant Chemotherapy on the Tumor Microenvironment of Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2011;19:1713–1719. doi: 10.1245/s10434-011-1906-x.
    1. Chandran S., Somerville R.P.T., Yang J.C., Sherry R.M., Klebanoff C., Goff S.L., Wunderlich J.R., Danforth D.N., Zlott D., Paria B.C., et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: A single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 2017;18:792–802. doi: 10.1016/S1470-2045(17)30251-6.
    1. Koh S., Bertoletti A. Cancer immunotherapy: Targeting the difference. J. Hepatol. 2014;61:1175–1177. doi: 10.1016/j.jhep.2014.06.023.
    1. Kimura T., Egawa S., Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat. Rev. Urol. 2017;14:501–510. doi: 10.1038/nrurol.2017.77.
    1. Mellman I., Steinman R.M. Dendritic Cells. Cell. 2001;106:255–258. doi: 10.1016/S0092-8674(01)00449-4.
    1. Wang C., Pu J., Yu H., Liu Y., Yan H., He Z., Feng X. A Dendritic Cell Vaccine Combined With Radiotherapy Activates the Specific Immune Response in Patients With Esophageal Cancer. J. Immunother. 2017;40:71–76. doi: 10.1097/CJI.0000000000000155.
    1. Daiko H., Marafioti T., Fujiwara T., Shirakawa Y., Nakatsura T., Kato K., Puccio I., Hikichi T., Yoshimura S., Nakagawa T., et al. Exploratory open-label clinical study to determine the S-588410 cancer peptide vaccine-induced tumor-infiltrating lymphocytes and changes in the tumor microenvironment in esophageal cancer patients. Cancer Immunol. Immunother. 2020;69:2247–2257. doi: 10.1007/s00262-020-02619-3.
    1. Kageyama S., Wada H., Muro K., Niwa Y., Ueda S., Miyata H., Takiguchi S., Sugino S.H., Miyahara Y., Ikeda H., et al. Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients. J. Transl. Med. 2013;11:246. doi: 10.1186/1479-5876-11-246.
    1. Yasuda T., Nishiki K., Hiraki Y., Kato H., Iwama M., Shiraishi O., Yasuda A., Shinkai M., Kimura Y., Sukegawa Y., et al. Phase II Adjuvant Cancer-Specific Vaccine Therapy for Esophageal Cancer Patients Curatively Resected after Preoperative Therapy with Pathologically Positive Nodes; Possible Significance of Tumor Immune Microenvironment in Its Clinical Effects. Ann. Surg. 2022;275:e155–e162. doi: 10.1097/SLA.0000000000003880.
    1. Neelapu S.S., Tummala S., Kebriaei P., Wierda W., Gutierrez C., Locke F.L., Komanduri K.V., Lin Y., Jain N., Daver N., et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2017;15:47–62. doi: 10.1038/nrclinonc.2017.148.
    1. Yamada T., Yoshikawa T., Taguri M., Hayashi T., Aoyama T., Sue-Ling H.M., Bonam K., Hayden J.D., Grabsch H.I. The survival difference between gastric cancer patients from the UK and Japan remains after weighted propensity score analysis considering all background factors. Gastric Cancer. 2015;19:479–489. doi: 10.1007/s10120-015-0480-5.
    1. Strong V.E., Song K.Y., Park C.H., Jacks L.M., Gonen M., Shah M., Coit D.G., Brennan M. Comparison of Gastric Cancer Survival Following R0 Resection in the United States and Korea Using an Internationally Validated Nomogram. Ann. Surg. 2010;251:640–646. doi: 10.1097/SLA.0b013e3181d3d29b.
    1. Markar S.R., Karthikesalingam A., Jackson D., Hanna G.B. Long-Term Survival After Gastrectomy for Cancer in Randomized, Controlled Oncological Trials: Comparison between West and East. Ann. Surg. Oncol. 2013;20:2328–2338. doi: 10.1245/s10434-012-2862-9.
    1. Wang J., Sun Y., Bertagnolli M.M. Comparison of Gastric Cancer Survival between Caucasian and Asian Patients Treated in the United States: Results from the Surveillance Epidemiology and End Results (SEER) Database. Ann. Surg. Oncol. 2015;22:2965–2971. doi: 10.1245/s10434-015-4388-4.
    1. Mantziari S., Demartines N. Poor outcome reporting in medical research; building practice on spoilt grounds. Ann. Transl. Med. 2017;5((Suppl. 1)):S15. doi: 10.21037/atm.2017.03.75.
    1. Centers for Medicare & Medicaid Services 2019 ASP Drug Pricing Files. [(accessed on 29 July 2021)]; Available online: .
    1. Chiang C.-L., Chan S.-K., Lee S.-F., Wong I.O.-L., Choi H.C.-W. Cost-effectiveness of Pembrolizumab as a Second-Line Therapy for Hepatocellular Carcinoma. JAMA Netw. Open. 2021;4:e2033761. doi: 10.1001/jamanetworkopen.2020.33761.

Source: PubMed

3
Subskrybuj