Determinants of Performance in the Timed Up-and-Go and Six-Minute Walk Tests in Young and Old Healthy Adults

Gallin Montgomery, Jamie McPhee, Mati Pääsuke, Sarianna Sipilä, Andrea B Maier, Jean-Yves Hogrel, Hans Degens, Gallin Montgomery, Jamie McPhee, Mati Pääsuke, Sarianna Sipilä, Andrea B Maier, Jean-Yves Hogrel, Hans Degens

Abstract

The aim of this study was to assess associations between performance in the timed up-and-go (TUG) and six-minute walk distance (6MWD) with physiological characteristics in young and old healthy adults. Thereto, we determined TUG, 6MWD, normalised jump power, centre of pressure displacement during 1-leg standing, forced expiratory volume in 1 s, percentage of age-predicted maximal heart rate (HR%) and height in 419 healthy young (men: 23.5 ± 2.8 years, women: 23.2 ± 2.9 years) and old (men: 74.6 ± 3.2 years, women: 74.1 ± 3.2 years) adults. Normalised jump power explained 8% and 19% of TUG in young (p = 0.025) and older men (p < 0.001), respectively. When fat mass percentage and age were added to normalised jump power, 30% of TUG was explained in older men (R2adj = 0.30, p < 0.001 to 0.106). Appendicular lean muscle mass percentage (ALM%) and age were the best determinants of TUG for older women (R2adj = 0.16, p < 0.001 to 0.01). HR% explained 17-39% of 6MWD across all groups (R2adj = 0.17 to 39, p < 0.001). In conclusion, in men, jump power was a key determinant for TUG, while in old women only it was the ALM%. As HR% was the most important determinant of 6MWD, motivational bias needs to be considered in the interpretation of this test.

Keywords: ageing; muscle; physical functional performance; spirometry.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Podsiadlo D., Richardson S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991;39:142–148.
    1. Eagles D., Perry J.J., Sirois M.J., Lang E., Daoust R., Lee J., Griffith L., Wilding L., Neveu X., Emond M. Timed Up and Go predicts functional decline in older patients presenting to the emergency department following minor trauma. Age Ageing. 2017;46:214–219. doi: 10.1093/ageing/afw184.
    1. Sebastião E., Sandroff B.M., Learmonth Y.C., Motl R.W. Validity of the Timed Up and Go Test as a Measure of Functional Mobility in Persons with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016;97:1072–1077. doi: 10.1016/j.apmr.2015.12.031.
    1. Huang W.-N.W., Perera S., Vanswearingen J., Studenski S. Performance measures predict onset of activity of daily living difficulty in community-dwelling older adults. J. Am. Geriatr. Soc. 2010;58:844–852. doi: 10.1111/j.1532-5415.2010.02820.x.
    1. Northgraves M.J., Hayes S.C., Marshall P., Madden L.A., Vince R.V. The test-retest reliability of four functional mobility tests in apparently healthy adults. Isokinet. Exerc. Sci. 2016;24:171–179. doi: 10.3233/IES-160614.
    1. Steffen T.M., Hacker T.A., Mollinger L. Age- and Gender-Related Test Performance in Community-Dwelling Elderly People: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and Gait Speeds. Phys. Ther. 2002;82:128–137.
    1. Mathias S., Nayak U., Isaacs B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986;67:387–389.
    1. Benavent-Caballer V., Sendín-Magdalena A., Lisón J.F., Rosado-Calatayud P., Amer-Cuenca J.J., Salvador-Coloma P., Segura-Ortí E. Physical factors underlying the Timed “Up and Go” test in older adults. Geriatr. Nurs. (Minneap) 2016;37:122–127. doi: 10.1016/j.gerinurse.2015.11.002.
    1. Chen T., Chou L.-S. Effects of Muscle Strength and Balance Control on Sit-to-Walk and Turn Durations in the Timed Up and Go Test. Arch. Phys. Med. Rehabil. 2017;98:2471–2476. doi: 10.1016/j.apmr.2017.04.003.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Kang L., Han P., Wang J., Ma Y., Jia L., Fu L., Yu H., Chen X., Niu K., Guo Q. Timed up and go test can predict recurrent falls: A longitudinal study of the community-dwelling elderly in China. Clin. Interv. Aging. 2017;12:2009–2016. doi: 10.2147/CIA.S138287.
    1. Nocera J.R., Stegemöller E.L., Malaty I.A., Okun M.S., Marsiske M., Hass C.J. Using the Timed Up & Go Test in a Clinical Setting to Predict Falling in Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2013;94:1300–1305.
    1. Shumway-Cook A., Brauer S., Woollacott M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000;80:896–903.
    1. Khazzani H., Allali F., Bennani L., Ichchou L., Mansouri L.E., Abourazzak F.E., Abouqal R., Hajjaj-Hassouni N. The relationship between physical performance measures, bone mineral density, falls, and the risk of peripheral fracture: A cross-sectional analysis. BMC Public Health. 2009;9:1–7. doi: 10.1186/1471-2458-9-297.
    1. Jehu D.A., Paquet N., Lajoie Y. Balance and mobility training with or without concurrent cognitive training improves the timed up and go (TUG), TUG cognitive, and TUG manual in healthy older adults: An exploratory study. Aging Clin. Exp. Res. 2017;29:711–720. doi: 10.1007/s40520-016-0618-2.
    1. Nightingale C.J., Mitchell S.N., Butterfield S.A. Validation of the Timed Up and Go Test for Assessing Balance Variables in Adults Aged 65 and Older. J. Aging Phys. Act. 2018;17:1–15. doi: 10.1123/japa.2018-0049.
    1. Maden-Wilkinson T.M., McPhee J.S., Jones D.A., Degens H. Age-related loss of muscle mass, strength, and power and their association with mobility in recreationally-active older adults in the United Kingdom. J. Aging Phys. Act. 2015;23:352–360. doi: 10.1123/japa.2013-0219.
    1. Bean J.F., Kiely D.K., Herman S., Leveille S.G., Mizer K., Frontera W.R., Fielding R.A. The relationship between leg power and physical performance in mobility-limited older people. J. Am. Geriatr. Soc. 2002;50:461–467.
    1. Orange S.T., Marshall P., Madden L.A., Vince R.V. Can sit-to-stand muscle power explain the ability to perform functional tasks in adults with severe obesity? J. Sports Sci. 2019;37:1227–1234. doi: 10.1080/02640414.2018.1553500.
    1. Zarzeczny R., Nawrat-Szołtysik A., Polak A., Maliszewski J., Kiełtyka A., Matyja B., Dudek M., Zborowska J., Wajdman A. Aging effect on the instrumented Timed-Up-and-Go test variables in nursing home women aged 80–93 years. Biogerontology. 2017;18:651–663. doi: 10.1007/s10522-017-9717-5.
    1. Sperandio E.F., Arantes R.L., Matheus A.C., Silva R.P., Lauria V.T., Romiti M., Gagliardi A.R.T., Dourado V.Z. Intensity and physiological responses to the 6-minute walk test in middle-aged and older adults: A comparison with cardiopulmonary exercise testing. Braz. J. Med. Biol. Res. 2015;48:349–353. doi: 10.1590/1414-431x20144235.
    1. Mänttäri A., Suni J., Sievänen H., Husu P., Vähä-Ypyä H., Valkeinen H., Tokola K., Vasankari T. Six-minute walk test: A tool for predicting maximal aerobic power (VO2max) in healthy adults. Clin. Physiol. Funct. Imaging. 2018;38:1038–1045. doi: 10.1111/cpf.12525.
    1. Pasma J.H., Stijntjes M., Ou S.S., Blauw G.J., Meskers C.G.M., Maier A.B. Walking speed in elderly outpatients depends on the assessment method. Age. 2014;36:9736. doi: 10.1007/s11357-014-9736-y.
    1. Morley J.E., Abbatecola A.M., Argiles J.M., Baracos V., Bauer J., Bhasin S., Cederholm T., Coats A.J.S., Cummings S.R., Evans W.J., et al. Sarcopenia With Limited Mobility: An International Consensus. J. Am. Med. Dir. Assoc. 2011;12:403–409. doi: 10.1016/j.jamda.2011.04.014.
    1. Young S.D., Montes J., Kramer S.S., Marra J., Salazar R., Cruz R., Chiriboga C.A., Garber C.E., De Vivo D.C. Six-minute walk test is reliable and valid in spinal muscular atrophy. Muscle Nerve. 2016;54:836–842. doi: 10.1002/mus.25120.
    1. Cahalin L., Pappagianopoulos P., Prevost S., Wain J., Ginns L. The relationship of the 6-min walk test to maximal oxygen consumption in transplant candidates with end-stage lung disease. Chest. 1995;108:452–459. doi: 10.1378/chest.108.2.452.
    1. Troosters T., Gosselink R., Decramer M. Six-Minute Walk Test: A Valuable Test, When Properly Standardized. Phys. Ther. 2002;82:826–827. doi: 10.1093/ptj/82.8.826.
    1. Yazdanyar D.A., Aziz M.M., Enright P.L., Edmundowicz D., Boudreau R., Sutton-Tyrell K., Kuller L., Newman A.B. Association between Six Minute Walk Test and All-Cause Mortality, Coronary Heart Disease-Specific Mortality, and Incident Coronary Heart Disease. J. Aging Health. 2014;26:583–599. doi: 10.1177/0898264314525665.
    1. Zou H., Zhang J., Chen X., Wang Y., Lin W., Lin J., Chen H., Pan J. Reference Equations for the Six-Minute Walk Distance in the Healthy Chinese Han Population, Aged 18–30 Years. BMC Pulm. Med. 2017;17:1–10. doi: 10.1186/s12890-017-0461-z.
    1. Zou H., Zhu X., Zhang J., Wang Y., Wu X., Liu F., Xie X., Chen X. Reference equations for the six-minute walk distance in the healthy Chinese population aged 18–59 years. PLoS ONE. 2017;12:1–13. doi: 10.1371/journal.pone.0184669.
    1. Bean J.F., Kiely D.K., Leveille S.G., Herman S., Huynh C., Fielding R., Frontera W. The 6-minute walk test in mobility-limited elders: What is being measured? J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2002;51:M751–M756. doi: 10.1093/gerona/57.11.M751.
    1. Marsh A.P., Miller M.E., Saikin A.M., Rejeski W.J., Hu N., Lauretani F., Bandinelli S., Guralnik J.M., Ferrucci L. Lower Extremity Strength and Power Are Associated With 400- Meter Walk Time in Older Adults: The InCHIANTI Study. J. Gerontol. A Biol. Sci. Med. Sci. 2006;61:1186–1193. doi: 10.1093/gerona/61.11.1186.
    1. Bautmans I., Lambert M., Mets T. The six-minute walk test in community dwelling elderly: Influence of health status. BMC Geriatr. 2004;4:1–9. doi: 10.1186/1471-2318-4-6.
    1. Agrawal M.B., Awad N.T. Correlation between six minute walk test and spirometry in chronic pulmonary disease. J. Clin. Diagn. Res. 2015;9:OC01–OC04. doi: 10.7860/JCDR/2015/13181.6311.
    1. Sillanpää E., Stenroth L., Bijlsma A.Y., Rantanen T., McPhee J.S., Maden-Wilkinson T.M., Jones D.A., Narici M.V., Gapeyeva H., Pääsuke M., et al. Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults. Age. 2014;36:9667. doi: 10.1007/s11357-014-9667-7.
    1. Camarri B., Eastwood P.R., Cecins N.M., Thompson P.J., Jenkins S. Six minute walk distance in healthy subjects aged 55–75 years. Respir. Med. 2006;100:658–665. doi: 10.1016/j.rmed.2005.08.003.
    1. Xie Y.J., Liu E.Y., Anson E.R., Agrawal Y. Age-related imbalance is associated with slower walking speed: Analysis from the National Health and Nutrition Examination Survey. J. Geriatr. Phys. Ther. 2017;40:183–189. doi: 10.1519/JPT.0000000000000093.
    1. McPhee J.S., Hogrel J.Y., Maier A.B., Seppet E., Seynnes O.R., Sipilä S., Bottinelli R., Barnouin Y., Bijlsma A.Y., Gapeyeva H., et al. Physiological and functional evaluation of healthy young and older men and women: Design of the European MyoAge study. Biogerontology. 2013;14:325–337. doi: 10.1007/s10522-013-9434-7.
    1. Onambele G.L., Narici M.V., Maganaris C.N. Calf muscle-tendon properties and postural balance in old age. J. Appl. Physiol. 2006;100:2048–2056. doi: 10.1152/japplphysiol.01442.2005.
    1. Enright P.L. The Six-Minute Walk Test Introduction Standards and Indications 6-Minute Walk Test Versus Shuttle Walk Test Safety Variables Measured Conducting the Test Ensuring Quality Factors That Influence 6-Minute Walk Distance Interpreting the Results Improving the. Respir. Care. 2003;48:783–785.
    1. Fox S.M., Naughton J.P. Physical Activity and the Prevention of Coronary Heart Disease. Prev. Med. (Baltim) 1972;1:92–120. doi: 10.1016/0091-7435(72)90079-5.
    1. Caserotti P., Aagaard P., Simonsen E.B., Puggaard L. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. Eur. J. Appl. Physiol. 2001;84:206–212. doi: 10.1007/s004210170006.
    1. Degens H., Maden-Wilkinson T.M., Ireland A., Korhonen M.T., Suominen H., Heinonen A., Radak Z., McPhee J.S., Rittweger J. Relationship between ventilatory function and age in master athletes and a sedentary reference population. Age (Omaha) 2013;35:1007–1015. doi: 10.1007/s11357-012-9409-7.
    1. Cormie P., McGuigan M.R., Newton R.U. Developing maximal neuromuscular power: Part 1 - biological basis of maximal power production. Sports Med. 2011;41:17–38. doi: 10.2165/11537690-000000000-00000.
    1. Reid K.F., Fielding R.A. Skeletal Muscle Power: A Critical Determinant of Physical. Exerc. Sport Sci. Rev. 2012;40:4–12. doi: 10.1097/JES.0b013e31823b5f13.
    1. Pojednic R.M., Clark D.J., Patten C. The specific ontributions fo force & velocity to muscle power in Older Adults. Exp. Gerontol. 2013;47:608–613.
    1. Arampatzis A., Degens H., Baltzopoulos V., Rittweger J. Why do older sprinters reach the finish line later? Exerc. Sport Sci. Rev. 2011;39:18–22. doi: 10.1097/JES.0b013e318201efe0.
    1. Buchner D.M., Cress M.E., Esselman P.C., Margherita A.J., de Lateur B.J., Campbell A.J., Wagner E.H. Factors Associated With Changes in Gait Speed in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996;51:M297–M302. doi: 10.1093/gerona/51A.6.M297.
    1. Bendall M.J., Bassey E.J., Pearson M.B. Factors affecting walking speed of elderly people. Age Ageing. 1989;18:327–332. doi: 10.1093/ageing/18.5.327.
    1. Samson M.M., Meeuwsen I.B.A.E., Crowe A., Dessens J.A.G., Duursma S.A., Verhaar H.J.J. Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing. 2000;29:235–242. doi: 10.1093/ageing/29.3.235.
    1. Inoue W., Ikezoe T., Tsuboyama T., Sato I., Malinowska K.B., Kawaguchi T., Tabara Y., Nakayama T., Matsuda F., Ichihashi N. Are there different factors affecting walking speed and gait cycle variability between men and women in community-dwelling older adults? Aging Clin. Exp. Res. 2017;29:215–221. doi: 10.1007/s40520-016-0568-8.
    1. Bijlsma A.Y., Meskers C.G.M., Van Den Eshof N., Westendorp R.G., Sipilä S., Stenroth L., Sillanpää E., McPhee J.S., Jones D.A., Narici M.V., et al. Diagnostic criteria for sarcopenia and physical performance. Age (Omaha) 2014;36:275–285. doi: 10.1007/s11357-013-9556-5.
    1. Henwood T.R., Riek S., Taaffe D.R. Strength versus muscle power-specific resistance training in community-dwelling older adults. J. Gerontol. Med. Sci. 2008;63:83–91. doi: 10.1093/gerona/63.1.83.
    1. Uematsu A., Hortobágyi T., Tsuchiya K., Kadono N., Kobayashi H., Ogawa T., Suzuki S. Lower extremity power training improves healthy old adults’ gait biomechanics. Gait Posture. 2018;62:303–310. doi: 10.1016/j.gaitpost.2018.03.036.
    1. McClaran S.R., Babcock M.A., Pegelow D.F., Reddan W.G., Dempsey J.A. Longitudinal effects of aging on lung function at rest and exercise in healthy active fit elderly adults. J. Appl. Physiol. 1995;78:1957–1968. doi: 10.1152/jappl.1995.78.5.1957.

Source: PubMed

3
Subskrybuj