Comparison between Russian and Aussie currents in the grip strength and thickness muscles of the non-dominant hand: A double-blind, prospective, randomized-controlled study

Gabriela Letícia Cittadin, Gabrielle Zardo Ansolin, Nathan Patryck Furtado Santana, Taliny Luiza Tonini, Márcia Rosângela Buzanello Azevedo, Carlos Eduardo de Albuquerque, Gladson Ricardo Flor Bertolini, Gabriela Letícia Cittadin, Gabrielle Zardo Ansolin, Nathan Patryck Furtado Santana, Taliny Luiza Tonini, Márcia Rosângela Buzanello Azevedo, Carlos Eduardo de Albuquerque, Gladson Ricardo Flor Bertolini

Abstract

Objectives: This study aims to compare the Russian and Aussie currents in the force gain and hypertrophy of the forearm muscles responsible for the grip.

Patients and methods: This double-blind, prospective, randomized-controlled study included a total of 30 healthy women (mean age: 20.2±1.7 years; range, 18 to 25 years) between May 2018 and July 2018. The participants were randomly divided into three groups: control group (CG, n=10), Aussie current group (ACG, n=10), and Russian current group (RCG, n=10). All three groups underwent a force test with a gripping dynamometer and the collection of images of the superficial and deep flexor muscles of the fingers with diagnostic ultrasound. The CG received a fictious current stimulus, while the other two groups received the designated stimuli from their currents. Further evaluations were performed after 24 h of the 12th application of the current.

Results: For grip, there were no significant differences in the moment of evaluation and interaction, while the effect size yielded certain points to advantages of force gain for the group using the RCG. The thickness of the superficial muscles showed a significant difference for the first evaluation between CG and RCG (p=0.014) and between RCG and ACG (p=0.010), indicating a larger effect size for RCG.

Conclusion: Our study results show that the Russian current is proven to be the mode which yields the most optimal results.

Keywords: Electric stimulation therapy; muscle strength dynamometer; skeletal muscle.

Conflict of interest statement

Conflict of Interest: The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Copyright © 2020, Turkish Society of Physical Medicine and Rehabilitation.

References

    1. Doucet BM, Lam A, Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med. 2012;85:201–215.
    1. da Silva VZ, Durigan JL, Arena R, de Noronha M, Gurney B, Cipriano G Jr. Current evidence demonstrates similar effects of kilohertz-frequency and low-frequency current on quadriceps evoked torque and discomfort in healthy individuals: a systematic review with meta-analysis. Physiother Theory Pract. 2015;31:533–539.
    1. Ward AR, Lucas-Toumbourou S. Lowering of sensory, motor, and pain-tolerance thresholds with burst duration using kilohertz-frequency alternating current electric stimulation. Arch Phys Med Rehabil. 2007;88:1036–1041.
    1. Ward AR, Robertson VJ. Sensory, motor, and pain thresholds for stimulation with medium frequency alternating current. Arch Phys Med Rehabil. 1998;79:273–278.
    1. Ward AR, Oliver WG, Buccella D. Wrist extensor torque production and discomfort associated with low-frequency and burst-modulated kilohertz-frequency currents. Phys Ther. 2006;86:1360–1367.
    1. Brentano MA, Pinto RS. Adaptações neurais ao treinamento de força. Atividade Física & Saúde. 2001;6:65–77.
    1. Radaelli R, Wilhelm Neto EN, Bottaro Marques MF, Pinto RS. Espessura e qualidade musculares medidas a partir de ultrassonografia: influência de diferentes locais de mensuração. Rev Bras Cineantropom Desempenho Hum. 2011;13:87–93.
    1. Domingues PW, Moura CT, Onetta RC, Zinezi G, Buzzanello MR, Bertolini GRF. Efeitos da EENM associada à contração voluntária sobre a força de preensão palmar. Fisioter Mov. 2009;22:19–25.
    1. Ayres M, Ayres Júnior M, Ayres DL, Santos AA. Aplicações estatísticas nas áreas das ciências bio-médicas. Belém: Sociedade Civil Mamirauá, PA.; 2007.
    1. Jarske JM, Seabra AG, Silva LA. O uso de Mapas Auto- organiz ´aveis como ferramenta de An ´alise Explorat ´oria para Testes Cognitivos destinados a medir o Desempenho Escolar. CBIE. 2016:1009–1018.
    1. Szecsi J, Fornusek C. Comparison of torque and discomfort produced by sinusoidal and rectangular alternating current electrical stimulation in the quadriceps muscle at variable burst duty cycles. Am J Phys Med Rehabil. 2014;93:146–159.
    1. Karakuş D, Ersöz M, Koyuncu G, Türk D, Şaşmaz FM, Akyüz M. Effects of functional electrical stimulation on wrist function and spasticity in stroke: A randomized controlled study. Turk J Phys Med Rehab. 2013;59:97–102.
    1. Kanchiku T, Suzuki H, Imajo Y, Yoshida Y, Moriya A, Suetomi Y, et al. The efficacy of neuromuscular electrical stimulation with alternating currents in the kilohertz frequency to stimulate gait rhythm in rats following spinal cord injury. Biomed Eng Online. 2015;14:98–98.
    1. Ward AR. Electrical stimulation using kilohertz-frequency alternating current. Phys Ther. 2009;89:181–190.
    1. Dantas LO, Vieira A, Siqueira AL Jr, Salvini TF, Durigan JL. Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women. Muscle Nerve. 2015;51:76–82.
    1. Medeiros FV, Bottaro M, Vieira A, Lucas TP, Modesto KA, Bo APL, et al. Kilohertz and low-frequency electrical stimulation with the same pulse duration have similar efficiency for inducing isometric knee extension torque and discomfort. Am J Phys Med Rehabil. 2017;96:388–394.
    1. Vaz MA, Frasson VB. Low-frequency pulsed current versus kilohertz-frequency alternating current: a scoping literature review. Arch Phys Med Rehabil. 2018;99:792–805.
    1. Dreibati B, Lavet C, Pinti A, Poumarat G. Characterization of an electric stimulation protocol for muscular exercise. Ann Phys Rehabil Med. 2011;54:25–35.
    1. Maffiuletti NA, Gondin J, Place N, Stevens-Lapsley J, Vivodtzev I, Minetto MA. Clinical use of neuromuscular electrical stimulation for neuromuscular rehabilitation: What are we overlooking. Arch Phys Med Rehabil. 2018;99:806–812.
    1. Cattagni T, Lepers R, Maffiuletti NA. Effects of neuromuscular electrical stimulation on contralateral quadriceps function. J Electromyogr Kinesiol. 2018;38:111–118.
    1. ZhaoY , LaiJJ , WuXY , QuW , WangMQ , ChenL , et al. Neuromuscular electrical stimulation with kilohertz frequency alternating current to enhance sensorimotor cortical excitability. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:2240–2243.
    1. Lesnak J, Anderson D, Farmer B, Katsavelis D, Grindstaff TL. Validity of hand-held dynamometry in measuring quadriceps strength and rate of torque development. Int J Sports Phys Ther. 2019;14:180–187.
    1. Moreira D, Álvarez RRA, Gogoy JR de, Cambraia A do N. Abordagem sobre preensão palmar utilizando o dinamômetro JAMAR®: uma revisão de literatura. Rev Bras Ciência Mov. 2003;11:95–99.
    1. Martin FG, Nebuloni CC, Najas MS. Correlação entre estado nutricional e força de preensão palmar em idosos. Revista Brasileira de Geriatria e Gerontologia. 2012;15:493–504.
    1. Dias JA, Ovando AC, Külkamp W, Borges Junior NG. Força de preensão palmar: métodos de avaliação e fatores que influenciam a medida. Rev Bras Cineantropom Desempenho Hum. 2010;12:209–216.
    1. Teyhen DS, Rieger JL, Westrick RB, Miller AC, Molloy JM, Childs JD. Changes in deep abdominal muscle thickness during common trunk-strengthening exercises using ultrasound imaging. J Orthop Sports Phys Ther. 2008;38:596–605.
    1. Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017;29:19–27.

Source: PubMed

3
Subskrybuj