Improvements in iron status and cognitive function in young women consuming beef or non-beef lunches

Cynthia Blanton, Cynthia Blanton

Abstract

Iron status is associated with cognitive performance and intervention trials show that iron supplementation improves mental function in iron-deficient adults. However, no studies have tested the efficacy of naturally iron-rich food in this context. This investigation measured the hematologic and cognitive responses to moderate beef consumption in young women. Participants (n=43; age 21.1±0.4 years) were randomly assigned to a beef or non-beef protein lunch group [3-oz (85 g), 3 times weekly] for 16 weeks. Blood was sampled at baseline, and weeks 8 and 16, and cognitive performance was measured at baseline and week 16. Body iron increased in both lunch groups (p<0.0001), with greater improvement demonstrated in women with lower baseline body iron (p<0.0001). Body iron had significant beneficial effects on spatial working memory and planning speed (p<0.05), and ferritin responders (n=17) vs. non-responders (n=26) showed significantly greater improvements in planning speed, spatial working memory strategy, and attention (p<0.05). Lunch group had neither significant interactions with iron status nor consistent main effects on test performance. These findings support a relationship between iron status and cognition, but do not show a particular benefit of beef over non-beef protein consumption on either measure in young women.

Figures

Figure 1
Figure 1
Volunteer flow diagram.
Figure 2
Figure 2
Change in response time by ferritin response group; Change (endpoint-baseline) in One-Touch Stockings of Cambridge latency to first choice for move categories 1–6 for ferritin responders (n = 17) and non-responders (n = 26). Main effect of responder group, p = 0.007.
Figure 3
Figure 3
Change in strategy by ferritin response group; change (endpoint-baseline) in Spatial Working Memory strategy score for six- and eight-box problems in ferritin responders (n = 17) and non-responders (n = 26). A lower score and larger negative change indicate better strategy. Main effect of responder group, p = 0.007; *p < 0.05 between-group comparison for eight-box problem.

References

    1. Cogswell M.E., Looker A.C., Pfeiffer C.M., Cook J.D., Lacher D.A., Beard J.L., Lynch S.R., Grummer-Strawn L.M. Assessment of iron deficiency in US preschool children and nonpregnant females of childbearing age: National health and nutrition examination survey 2003–2006. Am. J. Clin. Nutr. 2009;89:1334–1342. doi: 10.3945/ajcn.2008.27151.
    1. Mejia-Rodriguez F., Shamah-Levy T., Villalpando S., Garcia-Guerra A., Mendez-Gomez I. Humaran, Iron, zinc, copper and magnesium deficiencies in Mexican adults from the National Health and Nutrition Survey 2006. Salud Publ. Mex. 2013;55:275–284.
    1. Cooper M., Greene-Finestone L., Lowell H., Levesque J., Robinson S. Iron sufficiency of Canadians. Health Rep. 2012;23:41–48.
    1. Hawk S., Englehardt K.G., Small C. Risks of iron deficiency among vegetarian college women. Health. 2012;4:113–119. doi: 10.4236/health.2012.43018.
    1. Houston M.S. Lifestyle and dietary practices influencing iron status in university women. Nutr. Res. 1997;17:9–22. doi: 10.1016/S0271-5317(96)00228-X.
    1. Wilcock C., Wengreen H., Schvaneveldt N.B. Iron deficiency in young-adult women attending Utah State University. J. Am. Diet. Assoc. 2004;104:27.
    1. Worthington-Roberts B.S., Breskin M.W., Monsen E.R. Iron status of premenopausal women in a university community and its relationship to habitual dietary sources of protein. Am. J. Clin. Nutr. 1988;47:275–279.
    1. Blanton C.A., Green M.W., Kretsch M.J. Body iron is associated with cognitive executive planning function in college women. Br. J. Nutr. 2013;109:906–913. doi: 10.1017/S0007114512002620.
    1. Beard J.L., Hendricks M.K., Perez E.M., Murray-Kolb L.E., Berg A., Vernon-Feagans L., Irlam J., Isaacs W., Sive A., Tomlinson M. Maternal iron deficiency anemia affects postpartum emotions and cognition. J. Nutr. 2005;135:267–272.
    1. Fordy J., Benton D. Does low iron status influence psychological functioning? J. Hum. Nutr. Diet. 1994;7:127–133. doi: 10.1111/j.1365-277X.1994.tb00420.x.
    1. Groner J.A., Holtzman N.A., Charney E., Mellits E.D. A randomized trial of oral iron on tests of short-term memory and attention span in young pregnant women. J. Adolesc. Health Care. 1986;7:44–48. doi: 10.1016/S0197-0070(86)80094-8.
    1. Khedr E., Hamed S.A., Elbeih E., El-Shereef H., Ahmad Y., Ahmed S. Iron states and cognitive abilities in young adults: Neuropsychological and neurophysiological assessment. Eur. Arch. Psychiatry Clin. Neurosci. 2008;258:489–496. doi: 10.1007/s00406-008-0822-y.
    1. Kretsch M.J., Fong A.K., Green M.W., Johnson H.L. Cognitive function, iron status, and hemoglobin concentration in obese dieting women. Eur. J. Clin. Nutr. 1998;52:512–518.
    1. Murray-Kolb L.E., Beard J.L. Iron treatment normalizes cognitive functioning in young women. Am. J. Clin. Nutr. 2007;85:778–787.
    1. Foley D., Hay D.A., Mitchell R.J. Specific cognitive effects of mild iron deficiency and associations with blood polymorphisms in young adults. Ann. Hum. Biol. 1986;13:417–425. doi: 10.1080/03014468600008601.
    1. Beard J.L. Effectiveness and strategies of iron supplementation during pregnancy. Am. J. Clin. Nutr. 2000;71:1288S–1294S.
    1. Fisher A.E., Naughton D.P. Iron supplements: The quick fix with long-term consequences. Nutr. J. 2004;3:2. doi: 10.1186/1475-2891-3-2.
    1. Galloway R., McGuire J. Determinants of compliance with iron supplementation: Supplies, side effects, or psychology? So. Sci. Med. 1994;39:381–390. doi: 10.1016/0277-9536(94)90135-X.
    1. Heath A.L., Skeaff C.M., Williams S., Gibson R.S. The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women. Public Health Nutr. 2001;4:197–206.
    1. Patterson A.J., Brown W.J., Roberts D.C. Dietary and supplement treatment of iron deficiency results in improvements in general health and fatigue in Australian women of childbearing age. J. Am. Coll. Nutr. 2001;20:337–342. doi: 10.1080/07315724.2001.10719054.
    1. McClung J.P., Karl J.P. Iron deficiency and obesity: The contribution of inflammation and diminished iron absorption. Nutr. Rev. 2009;67:100–104. doi: 10.1111/j.1753-4887.2008.00145.x.
    1. Sherwin B.B. Estrogen and cognitive functioning in women. Endocr. Rev. 2003;24:133–151. doi: 10.1210/er.2001-0016.
    1. Kim I., Yetley E.A., Calvo M.S. Variations in iron-status measures during the menstrual cycle. Am. J. Clin. Nutr. 1993;58:705–709.
    1. Cook J.D., Flowers C.H., Skikne B.S. The quantitative assessment of body iron. Blood. 2003;101:3359–3364. doi: 10.1182/blood-2002-10-3071.
    1. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972;18:499–502.
    1. Konijn A.M. Iron metabolism in inflammation. Baillieres Clin. Haematol. 1994;7:829–849. doi: 10.1016/S0950-3536(05)80127-1.
    1. Ford E.S., Giles W.H., Mokdad A.H., Myers G.L. Distribution and correlates of C-reactive protein concentrations among adult US women. Clin. Chem. 2004;50:574–581. doi: 10.1373/clinchem.2003.027359.
    1. Doniger G.M., Simon E.S., Zivotofsky A.Z. Comprehensive computerized assessment of cognitive sequelae of a complete 12–16 h fast. Behav. Neurosci. 2006;120:804–816. doi: 10.1037/0735-7044.120.4.804.
    1. Youdim M.B., Ben-Shachar D., Yehuda S. Putative biological mechanisms of the effect of iron deficiency on brain biochemistry and behavior. Am. J. Clin. Nutr. 1989;50:607–615.
    1. U.S. Department of Agriculture, Agricultural Research Service, 2013. USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Homepage. [(accessed on 29 September 2013)]. Available online: .
    1. U.S. Department of Agriculture, Agricultural Research Service . USDA Food and Nutrient Database for Dietary Studies, version 1.0. Agricultural Research Service, Food Surveys Research Group; Beltsville, MD, USA: 2004.
    1. SAS Institute Inc.; Cary, NC, USA: 2010. Administering SAS® Enterprise Guide® 4.3.
    1. Brownlie T., Utermohlen V., Hinton P.S., Giordano C., Haas J.D. Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am. J. Clin. Nutr. 2002;75:734–742.
    1. Bregman D.B., Morris D., Koch T.A., He A., Goodnough L.T. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anemia. Am. J. Hematol. 2013;88:97–101. doi: 10.1002/ajh.23354.
    1. Cooper M.J., Zlotkin S.H. Day-to-day variation of transferrin receptor and ferritin in healthy men and women. Am. J. Clin. Nutr. 1996;64:738–742.
    1. Stupnicki R., Malczewska J., Milde K., Hackney A.C. Day to day variability in the transferrin receptor/ferritin index in female athletes. Br. J. Sports Med. 2003;37:267–269. doi: 10.1136/bjsm.37.3.267.
    1. Borel M.J., Smith S.M., Derr J., Beard J.L. Day-to-day variation in iron-status indices in healthy men and women. Am. J. Clin. Nutr. 1991;54:729–735.
    1. Sauberlich H.E. In: Assessment of Nutritional Status. 2nd ed. Wolinsky I., Hickson J., editors. CRC Press; Boca Raton, FL, USA: 1999.
    1. Mifflin M.D., Jeor S.T.S., Hill L.A., Scott B.J., Daugherty S.A., Koh Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990;51:241–247.
    1. Goldberg G.R., Black A.E., Jebb S.A., Cole T.J., Murgatroyd P.R., Coward W.A., Prentice A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991;45:569–581.
    1. Lukowski A.F., Koss M., Burden M.J., Jonides J., Nelson C.A., Kaciroti N., Jimenez E., Lozoff B. Iron deficiency in infancy and neurocognitive functioning at 19 years: Evidence of long-term deficits in executive function and recognition memory. Nutr. Neurosci. 2010;13:54–70. doi: 10.1179/147683010X12611460763689.
    1. Murray-Kolb L.E. Iron status and neuropsychological consequences in women of reproductive age: What do we know and where are we headed? J. Nutr. 2011;141:747S–755S. doi: 10.3945/jn.110.130658.
    1. Bruner A.B., Joffe A., Duggan A.K., Casella J.F., Brandt J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet. 1996;348:992–996. doi: 10.1016/S0140-6736(96)02341-0.
    1. Hoppe M., Brun B., Larsson M.P., Moraeus L., Hulthen L. Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition. 2013;29:89–95. doi: 10.1016/j.nut.2012.04.013.
    1. Karl J.P., Lieberman H.R., Cable S.J., Williams K.W., Young A.J., McClung J.P. Randomized, double-blind, placebo-controlled trial of an iron-fortified food product in female soldiers during military training: Relations between iron status, serum hepcidin, and inflammation. Am. J. Clin. Nutr. 2010;92:93–100. doi: 10.3945/ajcn.2010.29185.
    1. Haas J.D., Beard J.L., Murray-Kolb L.E., del Mundo A.M., Felix A., Gregorio G.B. Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J. Nutr. 2005;135:2823–2830.
    1. Lyle R.M., Weaver C.M., Sedlock D.A., Rajaram S., Martin B., Melby C.L. Iron status in exercising women: The effect of oral iron therapy vs increased consumption of muscle foods. Am. J. Clin. Nutr. 1992;56:1049–1055.
    1. Snetselaar L., Stumbo P., Chenard C., Ahrens L., Smith K., Zimmerman B. Adolescents eating diets rich in either lean beef or lean poultry and fish reduced fat and saturated fat intake and those eating beef maintained serum ferritin status. J. Am. Diet. Assoc. 2004;104:424–428. doi: 10.1016/j.jada.2003.12.016.
    1. Navas-Carretero S., Perez-Granados A.M., Schoppen S., Sarria B., Carbajal A., Vaquero M.P. Iron status biomarkers in iron deficient women consuming oily fish vs. red meat diet. J. Physiol. Biochem. 2009;65:165–174. doi: 10.1007/BF03179067.
    1. Casgrain A., Collings R., Harvey L.J., Hooper L., Fairweather-Tait S.J. Effect of iron intake on iron status: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012;96:768–780. doi: 10.3945/ajcn.112.040626.
    1. Wenger M.J., Murray-Kolb L.E., Haas J.D. Variations in body iron status determine variations in body energy expenditure and brain dynamics as a function of perceptual and cognitive workload. FASEB J. 2013;27:840.
    1. Wenger M.J., Scott S.P., Murray-Kolb L.E., Ghugre P., Udipi S., Haas J.D. Brain dynamics as a function of iron status: Relating electroencephalographic (EEG) patterns and body iron measures in Indian adolescents. FASEB J. 2013;27:845. doi: 10.1096/fj.13-0301ufm.
    1. Kececi H., Degirmenci Y. Quantitative EEG and cognitive evoked potentials in anemia. Neurophysiol. Clin. 2008;38:137–143. doi: 10.1016/j.neucli.2008.01.004.
    1. Tucker D., Sandstead H.H., Penland J., Dawson S., Milne D. Iron status and brain function: Serum ferritin levels associated with asymmetries of cortical electrophysiology and cognitive performance. Am. J. Clin. Nutr. 1984;39:105–113.
    1. Tucker D.M., Sandstead H.H., Swenson R.A., Sawler B.G., Penland J.G. Longitudinal study of brain function and depletion of iron stores in individual subjects. Physiol. Behav. 1982;29:737–740. doi: 10.1016/0031-9384(82)90248-7.
    1. Beard J.L., Durward C. Nutrition and Health, A. Bendich. In: Anderson G.J., McLaren G.D., editors. Iron Physiology and Pathophysiology in Humans. Humana Press; New York, NY, USA: 2012.
    1. Beard J.L., Connor J.R. Iron status and neural functioning. Annu. Rev. Nutr. 2003;23:41–58. doi: 10.1146/annurev.nutr.23.020102.075739.
    1. Anding J.D., Suminski R.R., Boss L. Dietary intake, body mass index, exercise, and alcohol: Are college women following the dietary guidelines for Americans? J. Am. Coll. Health. 2001;49:167–171. doi: 10.1080/07448480109596299.
    1. Huang T.T., Harris K.J., Lee R.E., Nazir N., Born W., Kaur H. Assessing overweight, obesity, diet, and physical activity in college students. J. Am. Coll. Health. 2003;52:83–86. doi: 10.1080/07448480309595728.
    1. Larson N.I., Perry C.L., Story M., Neumark-Sztainer D. Food preparation by young adults is associated with better diet quality. J. Am. Diet. Assoc. 2006;106:2001–2007. doi: 10.1016/j.jada.2006.09.008.
    1. Gibson S., Ashwell M. The association between red and processed meat consumption and iron intakes and status among British adults. Public Health Nutr. 2003;6:341–350.
    1. Anguera J.A., Boccanfuso J., Rintoul J.L., Al-Hashimi O., Faraji F., Janowich J., Kong E., Larraburo Y., Rolle C., Johnston E., et al. Video game training enhances cognitive control in older adults. Nature. 2013;501:97–101. doi: 10.1038/nature12486.

Source: PubMed

3
Subskrybuj