Phase 1 study of intraventricular 131I-omburtamab targeting B7H3 (CD276)-expressing CNS malignancies

Kim Kramer, Neeta Pandit-Taskar, Brian H Kushner, Pat Zanzonico, John L Humm, Ursula Tomlinson, Maria Donzelli, Suzanne L Wolden, Sophia Haque, Ira Dunkel, Mark M Souweidane, Jeffrey P Greenfield, Satish Tickoo, Jason S Lewis, Serge K Lyashchenko, Jorge A Carrasquillo, Bae Chu, Christopher Horan, Steven M Larson, Nai-Kong V Cheung, Shakeel Modak, Kim Kramer, Neeta Pandit-Taskar, Brian H Kushner, Pat Zanzonico, John L Humm, Ursula Tomlinson, Maria Donzelli, Suzanne L Wolden, Sophia Haque, Ira Dunkel, Mark M Souweidane, Jeffrey P Greenfield, Satish Tickoo, Jason S Lewis, Serge K Lyashchenko, Jorge A Carrasquillo, Bae Chu, Christopher Horan, Steven M Larson, Nai-Kong V Cheung, Shakeel Modak

Abstract

Background: The prognosis for metastatic and recurrent tumors of the central nervous system (CNS) remains dismal, and the need for newer therapeutic targets and modalities is critical. The cell surface glycoprotein B7H3 is expressed on a range of solid tumors with a restricted expression on normal tissues. We hypothesized that compartmental radioimmunotherapy (cRIT) with the anti-B7H3 murine monoclonal antibody omburtamab injected intraventricularly could safely target CNS malignancies.

Patients and methods: We conducted a phase I trial of intraventricular 131I-omburtamab using a standard 3 + 3 design. Eligibility criteria included adequate cerebrospinal fluid (CSF) flow, no major organ toxicity, and for patients > dose level 6, availability of autologous stem cells. Patients initially received 74 MBq radioiodinated omburtamab to evaluate dosimetry and biodistribution followed by therapeutic 131I-omburtamab dose-escalated from 370 to 2960 MBq. Patients were monitored clinically and biochemically for toxicity graded using CTCAEv 3.0. Dosimetry was evaluated using serial CSF and blood sampling, and serial PET or gamma-camera scans. Patients could receive a second cycle in the absence of grade 3/4 non-hematologic toxicity or progressive disease.

Results: Thirty-eight patients received 100 radioiodinated omburtamab injections. Diagnoses included metastatic neuroblastoma (n = 16) and other B7H3-expressing solid tumors (n = 22). Thirty-five patients received at least 1 cycle of treatment with both dosimetry and therapy doses. Acute toxicities included < grade 4 self-limited headache, vomiting or fever, and biochemical abnormalities. Grade 3/4 thrombocytopenia was the most common hematologic toxicity. Recommended phase 2 dose was 1850 MBq/injection. The median radiation dose to the CSF and blood by sampling was 1.01 and 0.04 mGy/MBq, respectively, showing a consistently high therapeutic advantage for CSF. Major organ exposure was well below maximum tolerated levels. In patients developing antidrug antibodies, blood clearance, and therefore therapeutic index, was significantly increased. In patients receiving cRIT for neuroblastoma, survival was markedly increased (median PFS 7.5 years) compared to historical data.

Conclusions: cRIT with 131I-omburtamab is safe, has favorable dosimetry and may have a therapeutic benefit as adjuvant therapy for B7-H3-expressing leptomeningeal metastases.

Trial registration: clinicaltrials.gov NCT00089245, August 5, 2004.

Keywords: B7H3; CNS metastases; CNS tumors; Omburtamab; Radioimmunotherapy.

Conflict of interest statement

MSK has institutional financial interests related to this research in the form of intellectual property rights and equity interests in Y-Mabs, the company licensing the intellectual property from MSK. N.K. Cheung (NKC) reports receiving commercial research grants from Y-Mabs Therapeutics and Abpro-Labs Inc.; holding ownership interest/equity in Y-Mabs Therapeutics Inc. and Abpro-Labs and owning stock options in Eureka Therapeutics. NKC and KK are inventors and owners of issued patents licensed by MSK to YMabs Therapeutics. KK holds ownership interest/equity in Y-Mabs Therapeutics Inc. NKC is a consultant/advisory board member for Abpro-Labs and Eureka Therapeutics. SM Larson (SML) reports: receiving commercial research grants from Genentech, Wilex, Telic and Regeneron; holding ownership interest/equity in Voreyda Theranostics Inc. and Elucida Oncology Inc.; holding stock in Imaginab. SML is the inventor and owner of issued patents both currently unlicensed and licensed by MSK to Samos Inc. and Elucida Oncology Inc. SML is or has been a consultant to Cynvec, Lilly, Prescient, Advanced Innovative Partners, Gershon Lehrman, Progenics and Janssen Pharmaceuticals. Jorge A Carasquillo reports other support from Y-Mabs Therapeutics. Mark M Souweidane reports other support from Aesculap. Kim Kramer, Serge Lyashchenko, and Shakeel Modak are consultants to Y-Mabs Therapeutics Inc. Shakeel Modak is a consultant to Illumina. Omburtamab was licensed to Y-Mabs Therapeutics by MSK in 2015. This clinical trial was not sponsored by Y-Mabs Therapeutics.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
124-I-omburtamab whole-body positron emission tomography (PET) scans obtained approximately 4 h, 24 h and 48 h following a single injection of 74 MBq intraventricular 124-I-omburtamab, demonstrating activity throughout the ventricles, the sac and over the convexities

References

    1. Wiens AL, Hattab EM. The pathological spectrum of solid CNS metastases in the pediatric population. J Neurosurg Pediatr. 2014;14(2):129–135. doi: 10.3171/2014.5.PEDS13526.
    1. De B, Kinnaman MD, Wexler LH, Kramer K, Wolden SL. Central nervous system relapse of rhabdomyosarcoma. Pediatr Blood Cancer. 2018 doi: 10.1002/pbc.26710.
    1. Kushner BH, Kramer K, LaQuaglia MP, Modak S, Yataghene K, Cheung NK. Reduction from seven to five cycles of intensive induction chemotherapy in children with high-risk neuroblastoma. J Clin Oncol. 2004;22(24):4888–4892. doi: 10.1200/JCO.2004.02.101.
    1. Kreissman SG, Seeger RC, Matthay KK, London WB, Sposto R, Grupp SA, et al. Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol. 2013;14(10):999–1008. doi: 10.1016/S1470-2045(13)70309-7.
    1. Park JR, Kreissman SG, London WB, Naranjo A, Cohn SL, Hogarty MD, et al. Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with high-risk neuroblastoma: a randomized clinical trial. JAMA. 2019;322(8):746–755. doi: 10.1001/jama.2019.11642.
    1. Pearson AD, Pinkerton CR, Lewis IJ, Imeson J, Ellershaw C, Machin D. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008;9(3):247–256. doi: 10.1016/S1470-2045(08)70069-X.
    1. Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Smith-Jones P, Zanzonico P, et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010;97(3):409–418. doi: 10.1007/s11060-009-0038-7.
    1. Pizzo ME, Wolak DJ, Kumar NN, Brunette E, Brunnquell CL, Hannocks MJ, et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol. 2018;596(3):445–475. doi: 10.1113/JP275105.
    1. Kramer K, Cheung NKV, DiResta G, Humm J, Arbit E, Larson S, et al. Pharmacokinetics and acute toxicology of intraventricular I-monoclonal antibody targeting disialoganglioside in non-human primates. J Neuro-Oncol. 1997;35:101–111. doi: 10.1023/A:1005822524905.
    1. Zhou Z, Singh R, Souweidane MM. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol. 2017;15(1):116–128. doi: 10.2174/1570159X14666160614093615.
    1. Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers - anatomic and physiologic considerations. Handb Clin Neurol. 2017;146:21–32. doi: 10.1016/B978-0-12-804279-3.00002-2.
    1. Khasawneh AH, Garling RJ, Harris CA. Cerebrospinal fluid circulation: what do we know and how do we know it? Brain Circ. 2018;4(1):14–18. doi: 10.4103/bc.bc_3_18.
    1. Kramer K, Smith-Jones P, Humm J, Zanzonico P, Pandit-Taskar N, Carrasquillo J, et al. Radioimmunotherapy for high-risk and recurrent cnetral nervous system (CNS) cancers: results of a phase II study with intra-Ommaya 131I–3F8. Neuro Oncol. 2010;12(6):43. doi: 10.1093/neuonc/noq043.
    1. Mehta AI, Choi BD, Ajay D, Raghavan R, Brady M, Friedman AH, et al. Convection enhanced delivery of macromolecules for brain tumors. Curr Drug Discov Technol. 2012;9(4):305–310. doi: 10.2174/157016312803305951.
    1. Pizer BL, Papanastassiou V, Moseley R, Tzanis S, Hancock JP, Kemshead JT, et al. Meningeal Leukemia and medulloblastoma-preliminary experience with intrathecal radioimmunotherapy. Antibody Immunoconj. 1991;4(4):753–761.
    1. Modak S, Zanzonico P, Grkovski M, Slotkin EK, Carrasquillo JA, Lyashchenko SK, et al. B7H3-directed intraperitoneal radioimmunotherapy with radioiodinated omburtamab for desmoplastic small round cell tumor and other peritoneal tumors: results of a phase I study. J Clin Oncol. 2020;38(36):4283–4291. doi: 10.1200/jco.20.01974.
    1. Souweidane MM, Kramer K, Pandit-Taskar N, Zhou Z, Haque S, Zanzonico P, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):1040–1050. doi: 10.1016/S1470-2045(18)30322-X.
    1. Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Tomlinson U, Wolden SL, et al. A curative approach to central nervous system metastases of neuroblastoma. J Clin Oncol. 2017;35(15_suppl):10545. doi: 10.1200/JCO.2017.35.15_suppl.10545.
    1. Modak S, Kramer K, Gultekin SH, Guo HF, Cheung NK. Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res. 2001;61(10):4048–4054.
    1. Cokgor I, Akabani G, Friedman HS, Friedman AH, Zalutsky MR, Zehngebot LM, et al. Long term response in a patient with neoplastic meningitis secondary to melanoma treated with (131)I-radiolabeled antichondroitin proteoglycan sulfate Mel-14 F(ab')(2): a case study. Cancer. 2001;91(9):1809–1813. doi: 10.1002/1097-0142(20010501)91:9<1809::AID-CNCR1200>;2-L.
    1. Brodeur GM, Seeger RC, Barrett A, Berthold F, Castleberry RP, D'Angio G, et al. International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol. 1988;6(12):1874–1881. doi: 10.1200/JCO.1988.6.12.1874.
    1. Pandit-Taskar N, Zanzonico PB, Kramer K, Grkovski M, Fung EK, Shi W, et al. Biodistribution and dosimetry of intraventricularly administered (124)I-omburtamab in patients with metastatic leptomeningeal tumors. J Nuclear Med. 2019;60(12):1794–1801. doi: 10.2967/jnumed.118.219576.
    1. Park JR, Bagatell R, Cohn SL, Pearson AD, Villablanca JG, Berthold F, et al. Revisions to the international neuroblastoma response criteria: a consensus statement from the national Cancer Institute clinical trials planning meeting. J Clin Oncol. 2017;35(22):2580–2587. doi: 10.1200/JCO.2016.72.0177.
    1. Kramer K, Humm JL, Souweidane MM, Zanzonico PB, Dunkel IJ, Gerald WL, et al. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol. 2007;25(34):5465–5470. doi: 10.1200/JCO.2007.11.1807.
    1. Modak S, Guo HF, Humm JL, Smith-Jones PM, Larson SM, Cheung NK. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother Radiopharm. 2005;20(5):534–546. doi: 10.1089/cbr.2005.20.534.
    1. Lv Y, Cheung NK, Fu BM. A pharmacokinetic model for radioimmunotherapy delivered through cerebrospinal fluid for the treatment of leptomeningeal metastases. J Nuclear Med. 2009;50(8):1324–1331. doi: 10.2967/jnumed.108.060798.
    1. Yerrabelli RS, He P, Fung EK, Kramer K, Zanzonico PB, Humm JL, et al. IntraOmmaya compartmental radioimmunotherapy using (131)I-omburtamab-pharmacokinetic modeling to optimize therapeutic index. Eur J Nucl Med Mol Imaging. 2020 doi: 10.1007/s00259-020-05050-z.
    1. Cheung NK, Cheung IY, Kushner BH, Ostrovnaya I, Chamberlain E, Kramer K, et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol. 2012;30(26):3264–3270. doi: 10.1200/JCO.2011.41.3807.
    1. Kramer K, Kushner B, Heller G, Cheung NK. Neuroblastoma metastatic to the central nervous system. The memorial Sloan-kettering cancer center experience and a literature review. Cancer. 2001;91(8):1510–9. doi: 10.1002/1097-0142(20010415)91:8<1510::AID-CNCR1159>;2-I.
    1. Matthay KK, Brisse H, Couanet D, Couturier J, Benard J, Mosseri V, et al. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer. 2003;98(1):155–165. doi: 10.1002/cncr.11448.
    1. Kramer K, Pandit-Taskar N, Zanzonico P, Wolden SL, Humm JL, DeSelm C, et al. Low incidence of radionecrosis in children treated with conventional radiation therapy and intrathecal radioimmunotherapy. J Neurooncol. 2015;123(2):245–249. doi: 10.1007/s11060-015-1788-z.
    1. Kramer K, Pandit-Taskar N, Zanzonico P, Humm J, Kushner B, Modak S, et al. Curative targeting of CNS neuroblastoma micrometastases using optimal therapeutic CSF dose delivered by compartmental radioimmunotherapy. Proc ANR Meeting. 2018;2018:311.
    1. Bailey K, Pandit-Taskar N, Humm JL, Zanzonico P, Gilheeney S, Cheung NV, et al. Targeted radioimmunotherapy for embryonal tumor with multilayered rosettes. J Neurooncol. 2019;143(1):101–106. doi: 10.1007/s11060-019-03139-6.

Source: PubMed

3
Subskrybuj