Differences in the acute effects of aerobic and resistance exercise in subjects with type 2 diabetes: results from the RAED2 Randomized Trial

Elisabetta Bacchi, Carlo Negri, Maddalena Trombetta, Maria Elisabetta Zanolin, Massimo Lanza, Enzo Bonora, Paolo Moghetti, Elisabetta Bacchi, Carlo Negri, Maddalena Trombetta, Maria Elisabetta Zanolin, Massimo Lanza, Enzo Bonora, Paolo Moghetti

Abstract

Objective: Both aerobic (AER) and resistance (RES) training, if maintained over a period of several months, reduce HbA1c levels in type 2 diabetes subjects. However, it is still unknown whether the short-term effects of these types of exercise on blood glucose are similar. Our objective was to assess whether there may be a difference in acute blood glucose changes after a single bout of AER or RES exercise.

Study design: Twenty-five patients participating in the RAED2 Study, a RCT comparing AER and RES training in diabetic subjects, were submitted to continuous glucose monitoring during a 60-min exercise session and over the following 47 h. These measurements were performed after 10.9+0.4 weeks of training. Glucose concentration areas under the curve (AUC) during exercise, the subsequent night, and the 24-h period following exercise, as well as the corresponding periods of the non-exercise day, were assessed. Moreover, the low (LBGI) and high (HBGI) blood glucose indices, which summarize the duration and extent of hypoglycaemia or hyperglycaemia, respectively, were measured.

Results: AER and RES training similarly reduced HbA1c. Forty-eight hour glucose AUC was similar in both groups. However, a comparison of glucose AUC during the 60-min exercise period and the corresponding period of the non-exercise day showed that glucose levels were lower during exercise in the AER but not in the RES group (time-by-group interaction p = 0.04). Similar differences were observed in the nocturnal periods (time-by-group interaction p = 0.02). Accordingly, nocturnal LBGI was higher in the exercise day than in the non-exercise day in the AER (p = 0.012) but not in the RES group (p = 0.62).

Conclusions: Although AER and RES training have similar long-term metabolic effects in diabetic subjects, the acute effects of single bouts of these exercise types differ, with a potential increase in late-onset hypoglycaemia risk after AER exercise.

Trial registration: ClinicalTrials.gov NCT01182948.

Conflict of interest statement

Competing Interests: Please note that Enzo Bonora, co-author of the manuscript, is no longer a member of the Editorial Board of the journal. Therefore we do not think it is necessary to make any specific statement on his role. However, we are willing to declare that this does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Study flow diagram.
Figure 1. Study flow diagram.
Figure 2. Schematic overview of the study…
Figure 2. Schematic overview of the study design.
The CGMS sensor was inserted at 8:30–9:30 am. Glucose concentrations were recorded over a 48-h period, starting at 6:30 pm of the same day, corresponding to the beginning of the 60-min exercise session. Several time periods were separately analyzed: the exercise period (6:30–7:30 pm), the subsequent nocturnal period (1:00 am–5:00 am) and the 24-h period following the beginning of the exercise session (exercise day), as well as the corresponding time periods of the following (non-exercise) day. The CGMS was removed at 7:30–8:30 pm of the non-exercise day. Meal times were between 6:30–8:30 am for breakfast, 12:30 am to 2:00 pm for lunch, 3:30–4:30 pm for a snack and 8:00–9:30 pm for dinner.
Figure 3. Mean glucose concentrations behavior during…
Figure 3. Mean glucose concentrations behavior during selected periods, in the aerobic (A) and the resistance (B) groups.
Upper panels: glucose concentrations during the 60-min exercise session and the corresponding period of the non-exercise day. Lower panels: glucose concentrations during the nocturnal sleeping period (01:00–05:00 am) of the two days. White circles indicate glucose values in the exercise day, and black circles those in the non-exercise day. P values refer to differences in glucose concentration AUCs between the exercise day and the non-exercise day.

References

    1. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, et al. (2010) Exercise and type 2 diabetes. The American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care 33: e147–167.
    1. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud'homme D, et al. (2007) Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147: 357–69.
    1. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, et al. (2010) Effects of Aerobic and Resistance Training on Hemoglobin A1c Levels in Patients with type 2 diabetes. JAMA 24: 2253–62.
    1. Bacchi E, Negri C, Zanolin ME, Milanese C, Faccioli N, et al. (2012) Metabolic effects of aerobic training and resistance training in type 2 diabetes subjects: a randomized controlled trial (the RAED2 study). Diabetes Care 35: 676–682.
    1. Suh SH, Paik IY, Jacobs K (2007) Regulation of blood glucose homeostasis during prolonged exercise. Mol Cells 23: 272–279.
    1. Minuk HL, Vranic M, Hanna AK, Albisser AM, Zinman B (1981) Glucoregulatory and metabolic response to exercise in obese non-insulin-dependent diabetes. AM J Physiol 240: E458–E464.
    1. Boulé NG, Weisnagel SJ, Lakka TA, Tremblay A, Bergman RN, et al. (2005) Effects of exercise training on glucose homeostasis: The HERITAGE Family Study. Diabetes Care 28: 108–114.
    1. Larsen JJ, Dela F, MAdsbad S, Vibe-Petersen J, Galbo H (1999) Interaction of sulfonylureas and exercise on glucose homeostasis in type 2 diabetic patients. Diabetes Care 22: 1647–1654.
    1. Cheyne E, Kerr D (2002) Marking ‘sense’ of diabetes: using a continuous glucose sensor on clinical practice. Diabete Metab Res Rev 18 Suppl 1: S43–S48.
    1. Boland E, Monsod T, Delucia M, Brandt CA, Fernando S, et al. (2001) Limitations of conventional methods of self-monitoring of blood glucose. Diabetes Care 24: 1858–1862.
    1. Tavris DR, Shoaibi A (2004) The public health impact of the MiniMed continuous glucose monitoring system (CGMS)—An assessment of the literature. Diabetes Technol Ther 6: 518–522.
    1. Workgroup on Hypoglycaemia, American Diabetes Association (2005) Defining and reporting hypoglycaemia in diabetes. Diabetes Care 28: 1245–1249.
    1. Kovatchev BP, Clarke WL, Breton M, Brayman K, McCall A (2005) Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application. Diabetes Technology Therapeutics 7: 849–862.
    1. Kovatchev BP, Cox DJ, Gonder-Frederick LA, Young-Hyman D, Schlundt D, et al. (1998) Assessment of risk for severe hypoglycemia among adults with IDDM: validation of the low blood glucose index. Diabetes Care 21: 1870–1875.
    1. Koopman R, Manders RJ, Zorenc AH, Hul GB, Kuipers H, et al. (2005) A single session of resistance exercise enhances insulin sensitivity for at least 24 h in healthy men. Eur J Appl Physiol 94: 180–187.
    1. Goto K, Higashiyama M, Ishii N, Takamatsu K (2005) Prior endurance exercise attenuates growth hormone response to subsequent resistance exercise. Eur J Appl Physiol 94: 333–338.
    1. Umpierre D, Ribeiro PA, Kramer CK, Leitão CB, Zucatti AT, et al. (2011) Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 305: 1790–1799.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, et al. (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43: 1334–1359.
    1. Malin SK, Gerber R, Chipkin SR, Braun B (2012) Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care 35: 131–136.
    1. Manders RJ, Van Dijk JW, van Loon LJ (2010) Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes. Med Sci Sports Exerc 42: 219–225.
    1. Praet SF, Manders RJ, Lieverse AG, Kuipers H, Stehouwer CD, et al. (2006) Influence of acute exercise on hyperglycemia in insulin-treated type 2 diabetes. Med Sci Sports Exerc 38: 2037–2044.
    1. Van Dijk JW, Manders RJ, Tummers K, Bonomi AG, Stehouwer CD, et al. (2012) Both resistance- and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in insulin-treated and non-insulin-treated type 2 diabetic patients. Diabetologia 55: 1273–1282.
    1. Amiel SA, Dixon T, Mann R, Jameson K (2008) Hypoglycaemia in Type 2 diabetes. Diabet Med 25: 245–254.
    1. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358: 2545–2559.
    1. Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, et al. (2010) Severe hypoglycemia and risks of vascular events and death. N Engl J Med 363: 1410–1418.
    1. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Malcolm JS, et al. (2010) Greater fluctuations in blood glucose seen both during and after aerobic exercise as compared to resistance exercise or no exercise in type 1 diabetes: a study using continuous glucose monitoring. Appl Physiol Nutr Metab 35 Suppl.: S112.
    1. Yardley JE, Kenny GP, Perkins BA, Riddell MC, Malcolm J, et al. (2012) Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care 35: 669–675.

Source: PubMed

3
Subskrybuj