A double-masked placebo-controlled trial of azithromycin to prevent child mortality in Burkina Faso, West Africa: Community Health with Azithromycin Trial (CHAT) study protocol

Ali Sié, Mamadou Ouattara, Mamadou Bountogo, Cheik Bagagnan, Boubacar Coulibaly, Valentin Boudo, Elodie Lebas, Jessica M Brogdon, Ying Lin, Till Bärnighausen, Travis C Porco, Thuy Doan, Thomas M Lietman, Catherine E Oldenburg, Étude CHAT Study Group, Ali Sié, Mamadou Ouattara, Mamadou Bountogo, Cheik Bagagnan, Boubacar Coulibaly, Valentin Boudo, Elodie Lebas, Jessica M Brogdon, Ying Lin, Till Bärnighausen, Travis C Porco, Thuy Doan, Thomas M Lietman, Catherine E Oldenburg, Étude CHAT Study Group

Abstract

Background: Biannual, mass azithromycin distribution has previously been shown to reduce all-cause child mortality in sub-Saharan Africa. Subgroup analysis suggested that the strongest effects were in the youngest children, leading to the hypothesis that targeting younger age groups might be an effective strategy to prevent mortality. We present the methods of two randomized controlled trials designed to evaluate mass and targeted azithromycin distribution for the prevention of child mortality in Burkina Faso, West Africa.

Methods/design: The Child Health with Azithromycin Treatment (CHAT) study consists of two nested, randomized controlled trials. In the first, communities are randomized in a 1:1 fashion to biannual, mass azithromycin distribution or placebo. The primary outcome is under-5 all-cause mortality measured at the community level. In the second, children attending primary healthcare facilities during the first 5-12 weeks of life for a healthy child visit (e.g., for vaccination) are randomized in a 1:1 fashion to a single orally administered dose of azithromycin or placebo. The primary outcome is all-cause mortality measured at 6 months of age. The trial commenced enrollment in August 2019.

Discussion: This study is expected to provide evidence on two health systems delivery approaches (mass and targeted treatment) for azithromycin to prevent all-cause child mortality. The results will inform global and national policies related to azithromycin for the prevention of child mortality.

Trial registration: ClinicalTrials.gov, ID: NCT03676764. Registered on 19 September 2018; prospectively registered pre results.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flow diagram for the Child Health with Azithromycin Treatment (CHAT) study in Nouna District, Burkina Faso, West Africa. This study is a hierarchical factorial study in which communities are randomized to biannual, mass, single-dose azithromycin or placebo distribution to all children aged 1–59 months and infants aged 5–12 weeks are individually randomized to a single dose of azithromycin or placebo. Abbreviations: MDA mass drug administration, CSPS Centre de Santé et de Promotion Sociale (primary healthcare facility)
Fig. 2
Fig. 2
Study area in Nouna District, Burkina Faso, West Africa. The shaded area indicates the Nouna Health and Demographic Surveillance site area of Nouna District. Primary health facilities are indicated with red crosses. Abbreviations: HDSS Health and Demographic Surveillance Site, NIG-GIS geographic information system
Fig. 3
Fig. 3
Study assessments for community randomization (a) and individual randomization (b)

References

    1. Golding N, Burstein R, Longbottom J, et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. Lancet. 2017;390:2171–2182. doi: 10.1016/S0140-6736(17)31758-0.
    1. Keenan JD, Bailey RL, West SK, et al. Mass azithromycin distribution for reducing childhood mortality in sub-Saharan Africa. N Engl J Med. 2018;378:1583–1592. doi: 10.1056/NEJMoa1715474.
    1. Emerson PM, Hooper PJ, Sarah V. Progress and projections in the program to eliminate trachoma. PLoS Negl Trop Dis. 2017;11:e0005402–e0005404. doi: 10.1371/journal.pntd.0005402.
    1. Chidambaram JD, Alemayehu W, Melese M, et al. Effect of a single mass antibiotic distribution on the prevalence of infectious trachoma. JAMA. 2006;295:1142–1146. doi: 10.1001/jama.295.10.1142.
    1. Solomon AW, Holland MJ, Alexander NDE, et al. Mass treatment with single-dose azithromycin for trachoma. N Engl J Med. 2004;351:1962–1971. doi: 10.1056/NEJMoa040979.
    1. OBrien KS, Cotter SY, Amza A, et al. Childhood mortality after mass distribution of azithromycin. Pediatr Infect Dis J. 2018;37:1082–1086. doi: 10.1097/INF.0000000000001992.
    1. Porco TC, Gebre T, Ayele B, et al. Effect of mass distribution of azithromycin for trachoma control on overall mortality in Ethiopian children: a randomized trial. JAMA. 2009;302:962–968. doi: 10.1001/jama.2009.1266.
    1. Yusuf S, Collins R, Peto R. Why do we need some large, simple trials? Stat Med. 1984;3:409–420. doi: 10.1002/sim.4780030421.
    1. Arnold BF, Hogan DR, Colford JM, Hubbard AE. Simulation methods to estimate design power: an overview for applied research. BMC Med Res Methodol. 2011;11:94. doi: 10.1186/1471-2288-11-94.
    1. Sie A, Louis VR, Gbangou A, et al. The Health and Demographic Surveillance System (HDSS) in Nouna, Burkina Faso, 1993–2007. Glob Health Action. 2010;3:5284. doi: 10.3402/gha.v3i0.5284.
    1. Sie A, Tapsoba C, Dah C, et al. Dietary diversity and nutritional status among children in rural Burkina Faso. Int Health. 2018;382:426–427.
    1. Eberly MD, Eide MB, Thompson JL, Nylund CM. Azithromycin in early infancy and pyloric stenosis. Pediatrics. 2015;135:483–488. doi: 10.1542/peds.2014-2026.
    1. Lund M, Pasternak B, Davidsen RB, et al. Use of macrolides in mother and child and risk of infantile hypertrophic pyloric stenosis: nationwide cohort study. BMJ. 2014;348:g1908. doi: 10.1136/bmj.g1908.
    1. Sie A, Bountogo M, Nebie E, et al. Neonatal azithromycin administration to prevent infant mortality: study protocol for a randomized controlled trial. BMJ Open. 2019;9:e031162. doi: 10.1136/bmjopen-2019-031162.
    1. Porco TC, Stoller NE, Keenan JD, Bailey RL, Lietman TM. Public key cryptography for quality assurance in randomization for clinical trials. Contemp Clin Trials. 2015;42:167–168. doi: 10.1016/j.cct.2015.03.016.
    1. Taylor HR, Burton MJ, Haddad D, West F, Wright H. Trachoma. Lancet. 2014;384:2142–2152. doi: 10.1016/S0140-6736(13)62182-0.
    1. Doan T, Arzika A, Ray KJ, et al. Gut microbial diversity in antibiotic-naïve children after systemic antibiotic exposure: a randomized controlled trial. Clin Infect Dis. 2017;64:1147–1153. doi: 10.1093/cid/cix141.
    1. Doan T, Hinterwirth A, Arzika AM, et al. Mass azithromycin distribution and community microbiome: a cluster-randomized trial. Open Forum Infect Dis. 2018;5:ofy182. doi: 10.1093/ofid/ofy182.
    1. Oldenburg CE, Sie A, Coulibaly B, et al. Effect of commonly-used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: a randomized clinical trial. Open Forum Infect Dis. 2018;5:ofy289. doi: 10.1093/ofid/ofy289.
    1. Oldenburg CE, Arzika AM, Maliki R, et al. Safety of azithromycin in infants under six months of age in Niger: a community randomized trial. PLoS Negl Trop Dis. 2018;12:e0006950. doi: 10.1371/journal.pntd.0006950.
    1. Ayele B, Gebre T, House JI, et al. Adverse events after mass azithromycin treatments for trachoma in Ethiopia. Am J Trop Med Hyg. 2011;85:291–294. doi: 10.4269/ajtmh.2011.11-0056.
    1. Astale T, Sata E, Zerihun M, et al. Self-reported side effects following mass administration of azithromycin to eliminate trachoma in Amhara, Ethiopia: results from a region-wide population-based survey. Am J Trop Med Hyg. 2019;100:696–699. doi: 10.4269/ajtmh.18-0781.
    1. Keenan JD, Arzika AM, Maliki R, et al. Longer-term assessment of azithromycin for reducing childhood mortality in Africa. N Engl J Med. 2019;380:2207–2214. doi: 10.1056/NEJMoa1817213.
    1. Arzika AM, Maliki R, Boubacar N, et al. Biannual mass azithromycin distributions and malaria parasitemia in pre-school children in Niger: a cluster-randomized, placebo-controlled trial. PLoS Med. 2019;16:e1002835. doi: 10.1371/journal.pmed.1002835.
    1. Oldenburg CE, Arzika AM, Amza A, et al. Mass azithromycin distribution to prevent childhood mortality: a pooled analysis of cluster randomized trials. Am J Trop Med Hyg. 2019;100:691–695. doi: 10.4269/ajtmh.18-0846.
    1. Porco TC, Oldenburg CE, Arzika AM, et al. Efficacy of mass azithromycin distribution for reducing childhood mortality across geographic regions. Am J Trop Med Hyg. 2019; Epub ahead of print.
    1. Oron AP, Burstein R, Mercer LD, et al. Effect modification by baseline mortality in the MORDOR azithromycin trial. Am J Trop Med Hyg. 2019; Epub ahead of print.
    1. Pavlinac PB, Singa BO, John-Stewart GC, et al. Azithromycin to prevent post-discharge morbidity and mortality in Kenyan children: a protocol for a randomised, double-blind, placebo-controlled trial (the Toto Bora trial) BMJ Open. 2017;7:e019170. doi: 10.1136/bmjopen-2017-019170.
    1. O’Brien K, Emerson P, Hooper PJ, et al. Antimicrobial resistance following mass azithromycin distribution for trachoma: a systematic review. Lancet Infect Dis. 2018;S1437-3099:30444.
    1. Doan T, Arzika AM, Hinterwirth A, et al. Macrolide resistance in MORDOR I—A cluster-randomized trial in Niger. N Engl J Med. 2019;380:2271–2273. doi: 10.1056/NEJMc1901535.

Source: PubMed

3
Subskrybuj