Prediction of methotrexate intolerance in juvenile idiopathic arthritis: a prospective, observational cohort study

Evert Hendrik Pieter van Dijkhuizen, Maja Bulatović Ćalasan, Saskia M F Pluijm, Maurits C F J de Rotte, Sebastiaan J Vastert, Sylvia Kamphuis, Robert de Jonge, Nico M Wulffraat, Evert Hendrik Pieter van Dijkhuizen, Maja Bulatović Ćalasan, Saskia M F Pluijm, Maurits C F J de Rotte, Sebastiaan J Vastert, Sylvia Kamphuis, Robert de Jonge, Nico M Wulffraat

Abstract

Background: Methotrexate (MTX) is an effective and safe drug in the treatment of juvenile idiopathic arthritis (JIA). Despite its safety, MTX-related gastrointestinal adverse effects before and after MTX administration, termed MTX intolerance, occur frequently, leading to non-compliance and potentially premature MTX termination. The aim of this study was to construct a risk model to predict MTX intolerance.

Methods: In a prospective JIA cohort, clinical variables and single nucleotide polymorphisms were determined at MTX start. The Methotrexate Intolerance Severity Score was employed to measure MTX intolerance in the first year of treatment. MTX intolerance was most prevalent at 6 or 12 months after MTX start, which was defined as the outcome for the prediction model. The model was developed in 152 patients using multivariable logistic regression analysis and subsequently internally validated using bootstrapping.

Results: The prediction model included the following predictors: JIA category, antinuclear antibody, parent/patient assessment of pain, Juvenile Arthritis Disease Activity Score-27, thrombocytes, alanine aminotransferase and creatinine. The model classified 77.5% of patients correctly, and 66.7% of patients after internal validation by bootstrapping. The lowest predicted risk of MTX intolerance was 18.9% and the highest predicted risk was 85.9%. The prediction model was transformed into a risk score (range 0-17). At a cut-off of ≥6, sensitivity was 82.0%, specificity 56.1%, positive predictive value was 58.7% and negative predictive value 80.4%.

Conclusions: This clinical prediction model showed moderate predictive power to detect MTX intolerance. To develop into a clinically usable tool, it should be validated in an independent cohort and updated with new predictors. Such an easy-to-use tool could then assist clinicians in identifying patients at risk to develop MTX intolerance, and in turn to monitor them closely and intervene timely in order to prevent the development of MTX intolerance.

Trial registration: ISRCTN register, www.isrctn.com, ISRCTN13524271.

Keywords: Adverse events; Juvenile idiopathic arthritis; Methotrexate; Methotrexate intolerance; Prediction model; Predictor.

Figures

Figure 1
Figure 1
Flowchart. Abbreviations: MISS, Methotrexate Intolerance Severity Score; MTX, methotrexate.

References

    1. Prakken B, Albani S, Martini A. Juvenile idiopathic arthritis. Lancet. 2011;377:2138–49. doi: 10.1016/S0140-6736(11)60244-4.
    1. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369:767–78. doi: 10.1016/S0140-6736(07)60363-8.
    1. Ortiz-Alvarez O, Morishita K, Avery G, Green J, Petty RE, Tucker LB, et al. Guidelines for blood test monitoring of methotrexate toxicity in juvenile idiopathic arthritis. J Rheumatol. 2004;31:2501–6.
    1. Murray KJ, Lovell DJ. Advanced therapy for juvenile arthritis. Best Pract Res Clin Rheumatol. 2002;16:361–78. doi: 10.1016/S1521-6942(02)90234-2.
    1. van der Meer A, Wulffraat NM, Prakken BJ, Gijsbers B, Rademaker CM, Sinnema G. Psychological side effects of MTX treatment in juvenile idiopathic arthritis: a pilot study. Clin Exp Rheumatol. 2007;25:480–5.
    1. Brunner HI, Johnson AL, Barron AC, Passo MH, Griffin TA, Graham TB, et al. Gastrointestinal symptoms and their association with health-related quality of life of children with juvenile rheumatoid arthritis: validation of a gastrointestinal symptom questionnaire. J Clin Rheumatol. 2005;11:194–204. doi: 10.1097/01.rhu.0000173616.81928.44.
    1. Hashkes PJ, Laxer RM. Medical treatment of juvenile idiopathic arthritis. JAMA. 2005;294:1671–84. doi: 10.1001/jama.294.13.1671.
    1. Ruperto N, Murray KJ, Gerloni V, Wulffraat N, de Oliveira SK, Falcini F, et al. A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate. Arthritis Rheum. 2004;50:2191–201. doi: 10.1002/art.20288.
    1. Ramanan AV, Whitworth P, Baildam EM. Use of methotrexate in juvenile idiopathic arthritis. Arch Dis Child. 2003;88:197–200. doi: 10.1136/adc.88.3.197.
    1. Alsufyani K, Ortiz-Alvarez O, Cabral DA, Tucker LB, Petty RE, Malleson PN. The role of subcutaneous administration of methotrexate in children with juvenile idiopathic arthritis who have failed oral methotrexate. J Rheumatol. 2004;31:179–82.
    1. Ravelli A, Migliavacca D, Viola S, Ruperto N, Pistorio A, Martini A. Efficacy of folinic acid in reducing methotrexate toxicity in juvenile idiopathic arthritis. Clin Exp Rheumatol. 1999;17:625–7.
    1. Alarcon GS, Morgan SL. Folinic acid to prevent side effects of methotrexate in juvenile rheumatoid arthritis. J Rheumatol. 1996;23:2184–5.
    1. Hunt PG, Rose CD, Ilvain-Simpson G, Tejani S. The effects of daily intake of folic acid on the efficacy of methotrexate therapy in children with juvenile rheumatoid arthritis. A controlled study. J Rheumatol. 1997;24:2230–2.
    1. Bulatovic M, Heijstek MW, Verkaaik M, van Dijkhuizen EHP, Armbrust W, Hoppenreijs EP, et al. High prevalence of methotrexate intolerance in juvenile idiopathic arthritis: development and validation of a methotrexate intolerance severity score. Arthritis Rheum. 2011;63:2007–13. doi: 10.1002/art.30367.
    1. Figueroa-Moseley C, Jean-Pierre P, Roscoe JA, Ryan JL, Kohli S, Palesh OG, et al. Behavioral interventions in treating anticipatory nausea and vomiting. J Natl Compr Canc Netw. 2007;5:44–50.
    1. Beukelman T, Patkar NM, Saag KG, Tolleson-Rinehart S, Cron RQ, DeWitt EM, et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res (Hoboken) 2011;63:465–82. doi: 10.1002/acr.20460.
    1. Horneff G. Update on biologicals for treatment of juvenile idiopathic arthritis. Expert Opin Biol Ther. 2013;13(3):376–76. doi: 10.1517/14712598.2013.735657.
    1. Ravelli A, Martini A. Methotrexate in juvenile idiopathic arthritis: answers and questions. J Rheumatol. 2000;27:1830–3.
    1. Davila L, Ranganathan P. Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol. 2011;7:537–50. doi: 10.1038/nrrheum.2011.117.
    1. Dervieux T, Greenstein N, Kremer J. Pharmacogenomic and metabolic biomarkers in the folate pathway and their association with methotrexate effects during dosage escalation in rheumatoid arthritis. Arthritis Rheum. 2006;54:3095–103. doi: 10.1002/art.22129.
    1. Fisher MC, Cronstein BN. Metaanalysis of methylenetetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity. J Rheumatol. 2009;36:539–45. doi: 10.3899/jrheum.080576.
    1. Hider SL, Thomson W, Mack LF, Armstrong DJ, Shadforth M, Bruce IN. Polymorphisms within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX. Rheumatology (Oxford) 2008;47:1156–9. doi: 10.1093/rheumatology/ken182.
    1. Malik F, Ranganathan P. Methotrexate pharmacogenetics in rheumatoid arthritis: a status report. Pharmacogenomics. 2013;14:305–14. doi: 10.2217/pgs.12.214.
    1. Ranganathan P, Culverhouse R, Marsh S, Mody A, Scott-Horton TJ, Brasington R, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol. 2008;35:572–9.
    1. Stamp LK, Chapman PT, O'Donnell JL, Zhang M, James J, Frampton C, et al. Polymorphisms within the folate pathway predict folate concentrations but are not associated with disease activity in rheumatoid arthritis patients on methotrexate. Pharmacogenet Genomics. 2010;20:367–76. doi: 10.1097/FPC.0b013e3283398a71.
    1. Weisman MH, Furst DE, Park GS, Kremer JM, Smith KM, Wallace DJ, et al. Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum. 2006;54:607–12. doi: 10.1002/art.21573.
    1. Wessels JA, Kooloos WM, De JR, De Vries-Bouwstra JK, Allaart CF, Linssen A, et al. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 2006;54:2830–9. doi: 10.1002/art.22032.
    1. Wessels JA, De Vries-Bouwstra JK, Heijmans BT, Slagboom PE, Goekoop-Ruiterman YP, Allaart CF, et al. Efficacy and toxicity of methotrexate in early rheumatoid arthritis are associated with single-nucleotide polymorphisms in genes coding for folate pathway enzymes. Arthritis Rheum. 2006;54:1087–95. doi: 10.1002/art.21726.
    1. van Dijkhuizen EP, Wulffraat NM. Prediction of methotrexate efficacy and adverse events in patients with juvenile idiopathic arthritis: a systematic literature review. Pediatr Rheumatol Online J. 2014;12:51. doi: 10.1186/1546-0096-12-51.
    1. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2.
    1. Bulatovic M, Heijstek MW, van Dijkhuizen EH, Wulffraat NM, Pluijm SM, De JR. Prediction of clinical non-response to methotrexate treatment in juvenile idiopathic arthritis. Ann Rheum Dis. 2012;71:1484–9. doi: 10.1136/annrheumdis-2011-200942.
    1. Van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate Imputation by Chained Equations in R. J Stat Soft. 2011;45:1–67.
    1. Hosmer DW, Lemeshow S. Applied Logistic Regression. New York: John Wiley & Sons; 1989.
    1. Harrell FE, Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4.
    1. Steyerberg EW, Harrell FE, Jr, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JD. Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54:774–81. doi: 10.1016/S0895-4356(01)00341-9.
    1. Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York: Springer; 2009.
    1. Schmeling H, Biber D, Heins S, Horneff G. Influence of methylenetetrahydrofolate reductase polymorphisms on efficacy and toxicity of methotrexate in patients with juvenile idiopathic arthritis. J Rheumatol. 2005;32:1832–6.
    1. Tukova J, Chladek J, Hroch M, Nemcova D, Hoza J, Dolezalova P. 677TT genotype is associated with elevated risk of methotrexate (MTX) toxicity in juvenile idiopathic arthritis: treatment outcome, erythrocyte concentrations of MTX and folates, and MTHFR polymorphisms. J Rheumatol. 2010;37:2180–6. doi: 10.3899/jrheum.091427.

Source: PubMed

3
Subskrybuj