Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass

Vania Patrone, Elia Vajana, Andrea Minuti, Maria L Callegari, Alessandro Federico, Carmela Loguercio, Marcello Dallio, Salvatore Tolone, Ludovico Docimo, Lorenzo Morelli, Vania Patrone, Elia Vajana, Andrea Minuti, Maria L Callegari, Alessandro Federico, Carmela Loguercio, Marcello Dallio, Salvatore Tolone, Ludovico Docimo, Lorenzo Morelli

Abstract

We assessed the gut microbial ecology of 11 severely obese patients before and after bilio-intestinal bypass (BIB). Fecal samples were evaluated for microbial communities using 16S rDNA Illumina sequencing, real-time PCR targeting functional genes, and gas chromatography of short chain fatty acids (SCFAs). At 6 months after surgery, subjects exhibited significant improvements in metabolic markers (body weight, glucose, and lipid metabolism) compared with baseline. The fecal microbiota of post-surgery individuals was characterized by an overall decrease of bacterial diversity, with a significant reduction in Lachnospiraceae, Clostridiaceae, Ruminococcaceae, Eubacteriaceae, and Coriobacteriaceae. On the contrary, there were significant increases of genera Lactobacillus, Megasphaera, and Acidaminococcus and the family Enterobacteriaceae. The pH was decreased in fecal samples from patients after BIB and SCFA profiles were altered, with lower percentages of acetate and propionate and higher levels of valerate and hexanoate. Some changes in the bacterial populations were associated with variations in the patients' metabolic health parameters, namely Gemmiger and glucose, Lactobacillus and glucose, and Faecalibacterium and triglycerides. The results from this study of BIB patients furthers our understanding of the composition of gut microbiota and the functional changes that may be involved in improving obesity-related conditions following weight-loss surgery.

Keywords: 16S rRNA; bariatric surgery; gut microbiota; illumina sequencing; obesity; short chain fatty acids; weight loss.

Figures

Figure 1
Figure 1
Alpha diversity metrics (Chao 1, Shannon and Simpson indices) of OTU-level fecal bacterial communities from obese individuals; each point represents a sample. Paired Student's t-test was performed to compare alpha diversity estimates before and after bilio-intestinal bypass. Asterisks indicate statistical significance (*P < 0.05; ***P < 0.001).
Figure 2
Figure 2
Non-metric multidimensional scaling (NMDS) ordination plot based on Bray-Curtis dissimilarities between OTU-level fecal bacterial communities in obese individuals before and after bilio-intestinal bypass.
Figure 3
Figure 3
Hierarchical clustering (A) and a barplot of relative abundances (B) of bacterial genera found within the fecal communities of obese patients. Only genera with a relative abundance ≥5% in at least one subject are represented. The dendrograms were calculated using Spearman's rank correlation and Ward-linkage clustering.
Figure 4
Figure 4
Histogram of the linear discriminant analysis (LDA) scores for differentially abundant bacterial clades in fecal samples between obese individuals before and after bilio-intestinal bypass. Negative (red bars) LDA scores represent bacterial groups over-abundant in post-surgery samples while positive (green bars) represent bacterial groups overrepresented in pre-surgery samples.
Figure 5
Figure 5
Abundance of metabolic functional genes in the fecal microbiota of obese individuals before and after bariatric surgery as determined by qRT–PCR. Genes targeted included BcoAT for butyrate producers, acs for acetogens, mcrA for methanogens, and dsrA for sulfate reducers. Values are log means ± SD. Paired Student's t-test was performed on log-transformed data. Asterisks indicate statistical significance (**P < 0.01; ***P < 0.001).
Figure 6
Figure 6
Levels of bacterial metabolites in the fecal samples of obese individuals before and after bilio-intestinal bypass. Individual short chain fatty acids (SCFAs) are shown as mean percentages of the total SCFA concentration. Values are means ± SD. Wilcoxon signed-rank test was performed to compare metabolites values before and after bilio-intestinal bypass. Asterisks indicate statistical significance (*P < 0.05; **P < 0.01).

References

    1. Bäckhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., et al. . (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723. 10.1073/pnas.0407076101
    1. Bjursell M., Admyre T., Göransson M., Marley A. E., Smith D. M., Oscarsson J., et al. . (2011). Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metabol. 300, E211–E220. 10.1152/ajpendo.00229.2010
    1. Brown A. J., Goldsworthy S. M., Barnes A. A., Eilert M. M., Tcheang L., Daniels D., et al. . (2003). The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319. 10.1074/jbc.M211609200
    1. Buchman A. L., Scolapio J., Fryer J. (2003). AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology 124, 1111–1134. 10.1016/S0016-5085(03)70064-X
    1. Chassard C., Bernalier-Donadille A. (2006). H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiol. Lett. 254, 116–122. 10.1111/j.1574-6968.2005.00016.x
    1. Claesson M. J., O'sullivan O., Wang Q., Nikkilä J., Marchesi J. R., Smidt H., et al. . (2009). Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4:e6669. 10.1371/journal.pone.0006669
    1. Claus S. P., Ellero S. L., Berger B., Krause L., Bruttin A., Molina J., et al. . (2011). Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271–e00210. 10.1128/mBio.00271-10
    1. Denman S. E., Tomkins N., McSweeney C. S. (2007). Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62, 313–322. 10.1111/j.1574-6941.2007.00394.x
    1. De Vadder F., Kovatcheva-Datchary P., Goncalves D., Vinera J., Zitoun C., Duchampt A., et al. . (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96. 10.1016/j.cell.2013.12.016
    1. Duncan S. H., Lobley G. E., Holtrop G., Ince J., Johnstone A. M., Louis P. (2008). Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond). 32, 1720–1724. 10.1038/ijo.2008.155
    1. Eriksson F. (1981). Biliointestinal bypass. Int. J. Obes. 5, 437–447.
    1. Ferrer M., Ruiz A., Lanza F., Haange S. B., Oberbach A., Till H., et al. . (2013). Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ. Microbiol. 15, 211–226. 10.1111/j.1462-2920.2012.02845.x
    1. Finucane M. M., Sharpton T. J., Laurent T. J., Pollard K. S. (2014). A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE 9:e84689. 10.1371/journal.pone.0084689
    1. Furet J. P., Kong L. C., Tap J., Poitou C., Basdevant A., Bouillot J. L., et al. . (2010). Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss, links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057. 10.2337/db10-0253
    1. Gagen E. J., Denman S. E., Padmanabha J., Zadbuke S., Al Jassim R., Morrison M., et al. . (2010). Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl. Environ. Microbiol. 76, 7785–7795. 10.1128/AEM.01679-10
    1. Ge H. F., Li X. F., Weiszmann J., Wang P., Baribault H., Chen J. L., et al. . (2008). Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519–4526. 10.1210/en.2008-0059
    1. Graessler J., Qin Y., Zhong H., Zhang J., Licinio J., Wong M. L., et al. . (2013). Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes, correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 13, 514–522. 10.1038/tpj.2012.43
    1. Hong Y. H., Nishimura Y., Hishikawa D., Tsuzuki H., Miyahara H., Gotoh C., et al. . (2005). Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099. 10.1210/en.2005-0545
    1. Jørgensen J. R., Clausen M. R., Mortensen P. B. (1997). Oxidation of short and medium chain C2-C8 fatty acids in Sprague-Dawley rat colonocytes. Gut 40, 400–405. 10.1136/gut.40.3.400
    1. Kimura I., Inoue D., Maeda T., Hara T., Ichimura A., Miyauchi S., et al. . (2011). Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. U.S.A. 108, 8030–8035. 10.1073/pnas.1016088108
    1. Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. . (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. 10.1093/nar/gks808
    1. Kondo R., Nedwell D. B., Purdy K. J., Silva S. D. (2004). Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol. J. 21, 145–157. 10.1080/01490450490275307
    1. Kong L. C., Tap J., Aron-Wisnewsky J., Pelloux V., Basdevant A., Bouillot J. L., et al. . (2013). Gut microbiota after gastric bypass in human obesity, increased richness and associations of bacterial genera with adipose tissue genes. Am. J. Clin. Nutr. 98, 16–24. 10.3945/ajcn.113.058743
    1. Le Poul E., Loison C., Struyf S., Springael J. Y., Lannoy V., Decobecq M. E., et al. . (2003). Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489. 10.1074/jbc.M301403200
    1. Levine U. Y., Looft T., Allen H. K., Stanton T. B. (2013). Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Appl. Environ. Microbiol. 79, 3879–3881. 10.1128/AEM.00589-13
    1. Ley R. E., Bäckhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U.S.A. 102, 11070–11075. 10.1073/pnas.0504978102
    1. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023. 10.1038/4441022a
    1. Li J. V., Ashrafian H., Bueter M., Kinross J., Sands C., Le Roux C. W., et al. . (2011). Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 60, 1214–1223. 10.1136/gut.2010.234708
    1. Liou A., Paziuk M., Luevano J., Machineni S., Turnbaugh P., Kaplan L. (2013). Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5:178ra41. 10.1126/scitranslmed.3005687
    1. Louis P., Flint H. J. (2007). Development of a semiquantitative degenerate real-time PCR-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl. Environ. Microbiol. 73, 2009–2012. 10.1128/AEM.02561-06
    1. Louis P., Young P., Holtrop G., Flint H. J. (2010). Diversity of human colonic butyrate producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314. 10.1111/j.1462-2920.2009.02066.x
    1. Marounek M., Fliegrova K., Bartos S. (1989). Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 55, 1570–1573.
    1. Marquet P., Duncan S. H., Chassard C., Bernalier-Donadille A., Flint H. J. (2009). Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol. Lett. 299, 128–134. 10.1111/j.1574-6968.2009.01750.x
    1. Martínez I., Wallace G., Zhang C., Legge R., Benson A. K., Carr T. P., et al. . (2009). Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 75, 4175–4184. 10.1128/AEM.00380-09
    1. Musso G., Gambino R., Durazzo M., Biroli G., Carello M., Fagà E., et al. (2005). Adipokines in NASH: post prandial lipid metabolism as a link between adiponectin and liver disease. Hepatology 42, 1175–118383. 10.1002/hep.20896
    1. Muyzer G., Stams A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454. 10.1038/nrmicro1892
    1. Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O'Hara R. B., et al. (2014). Vegan, Community Ecology Package. R Package Version 2.2–0.
    1. Panwar H., Rashmi H. M., Batish V. K., Grover S. (2013). Probiotics as potential biotherapeutics in the management of type 2 diabetes - prospects and perspectives. Diabetes Metab. Res. Rev. 29, 103–112. 10.1002/dmrr.2376
    1. Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team (2013). nlme, Linear and Nonlinear Mixed Effects Models. R package version 3.1–107.
    1. R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
    1. Samuel B. S., Shaito A., Motoike T., Rey F. E., Bäckhed F., Manchester J. K., et al. . (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. U.S.A. 105, 16767–16772. 10.1073/pnas.0808567105
    1. Schwiertz A., Taras D., Schäfer K., Beijer S., Bos N. A., Donus C., et al. . (2010). Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195. 10.1038/oby.2009.167
    1. Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garrett W. S., et al. . (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. 10.1186/gb-2011-12-6-r60
    1. Shetty S. A., Marathe N. P., Lanjekar V., Ranade D., Shouche Y. S. (2013). Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. PLoS ONE 8:e79353. 10.1371/journal.pone.0079353
    1. Tims S., Derom C., Jonkers D. M., Vlietinck R., Saris W. H., Kleerebezem M., et al. . (2013). Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 7, 707–717. 10.1038/ismej.2012.146
    1. Turnbaugh P. J., Bäckhed F., Fulton L., Gordon J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223. 10.1016/j.chom.2008.02.015
    1. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., et al. . (2009). A core gut microbiome in obese and lean twins. Nature 457, 480–484. 10.1038/nature07540
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031. 10.1038/nature05414
    1. Verdam F. J., Fuentes S., de Jonge C., Zoetendal E. G., Erbil R., Greve J. W., et al. . (2013). Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity 21, E607–E615. 10.1002/oby.20466
    1. Walker A. W., Duncan S. H., Leitch E. C. M., Child M. W., Flint H. J. (2005). pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71, 3692–3700. 10.1128/AEM.71.7.3692-3700.2005
    1. Wong J. M., de Souza R., Kendall C. W., Emam A., Jenkins D. J. (2006). Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243. 10.1097/00004836-200603000-00015
    1. Zhang D. L., Jiang Z. W., Jiang J., Cao B., Li J. S. (2003). D-lactic acidosis secondary to short bowel syndrome. Postgrad. Med. J. 79, 110–112. 10.1136/pmj.79.928.110
    1. Zhang H., DiBaise J. K., Zuccolo A., Kudrna D., Braidotti M., Yu Y., et al. . (2009). Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. U.S.A. 106, 2365–2370. 10.1073/pnas.0812600106

Source: PubMed

3
Subskrybuj