ALK-rearrangement in non-small-cell lung cancer (NSCLC)

Xue Du, Yun Shao, Hai-Feng Qin, Yan-Hong Tai, Hong-Jun Gao, Xue Du, Yun Shao, Hai-Feng Qin, Yan-Hong Tai, Hong-Jun Gao

Abstract

The ALK gene encodes a transmembrane tyrosine kinase receptor. ALK is physiologically expressed in the nervous system during embryogenesis, but its expression decreases postnatally. ALK first emerged in the field of oncology in 1994 when it was identified to fuse to NPM1 in anaplastic large-cell lymphoma. Since then, ALK has been associated with other types of cancers, including non-small-cell lung cancer (NSCLC). More than 19 different ALK fusion partners have been discovered in NSCLC, including EML4, KIF5B, KLC1, and TPR. Most of these ALK fusions in NSCLC patients respond well to the ALK inhibitor, crizotinib. In this paper, we reviewed fusion partner genes with ALK, detection methods for ALK-rearrangement (ALK-R), and the ALK-tyrosine kinase inhibitor, crizotinib, used in NSCLC patients.

Keywords: ALK-rearrangement (ALK-R); ALK-tyrosine kinase inhibitor (TKI); anaplastic lymphoma kinase (ALK); detection platforms; non-small-cell lung cancer (NSCLC).

© 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

Figures

Figure 1
Figure 1
(a) The ALK gene location in the genome; (b) structural organization of ALK protein; and (c) the domain of the fusion protein.

References

    1. Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 2001; 20: 5623–37.
    1. Wu JJ, Savooji J, Liu DL. Second‐ and third‐generation ALK inhibitors for non‐small cell lung cancer. J Hematol Oncol 2016; 9: 19.
    1. Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci 2004; 117: 3319–29.
    1. Iwahara T, Fujimoto J, Wen D et al Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 1997; 14: 439–49.
    1. Morris SW, Kirstein MN, Valentine MB et al Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non‐Hodgkins‐lymphoma. Science 1994; 263: 1281–4 (Published erratum appears in Science 1995;267:316–7).
    1. Barreca A, Lasorsa E, Riera L et al Anaplastic lymphoma kinase in human cancer. J Mol Endocrinol 2011; 47: R11–23.
    1. Franco R, Rocco G, Marino FZ et al Anaplastic lymphoma kinase: A glimmer of hope in lung cancer treatment? Expert Rev Anticancer Ther 2013; 13: 407–20.
    1. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008; 8: 11–23.
    1. Boi M, Zucca E, Inghirami G, Bertoni F. Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas. Br J Haematol 2015; 168: 771–83.
    1. Miyake I, Hakomori Y, Shinohara A et al Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene 2002; 21: 5823–34.
    1. Toyokawa G, Seto T. Updated evidence on the mechanisms of resistance to ALK inhibitors and strategies to overcome such resistance: Clinical and preclinical data. Oncol Res Treat 2015; 38: 291–8.
    1. Choi YL, Soda M, Yamashita Y et al EML4‐ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010; 363: 1734–9.
    1. Heuckmann JM, Hölzel M, Sos ML et al ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin Cancer Res 2011; 17: 7394–401.
    1. Sasaki T, Okuda K, Zheng W et al The neuroblastoma‐associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK‐translocated cancers. Cancer Res 2010; 70: 10038–43.
    1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.
    1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010; 19: 1893–907.
    1. Wen M, Wang X, Sun Y et al Detection of EML4‐ALK fusion gene and features associated with EGFR mutations in Chinese patients with non‐small‐cell lung cancer. Onco Targets Ther 2016; 9: 1989–95.
    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11–30.
    1. Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol 2015; 16: E342–51.
    1. Toyokawa G, Seto T. ALK inhibitors: What is the best way to treat patients with ALK+ non‐small‐cell lung cancer? Clin Lung Cancer 2014; 15: 313–9.
    1. Shaw AT, Kim DW, Nakagawa K et al Crizotinib versus chemotherapy in advanced ALK‐positive lung cancer. N Engl J Med 2013; 368: 2385–94.
    1. Shaw AT, Engelman JA. ALK in lung cancer: Past, present, and future. J Clin Oncol 2013; 31: 1105–11.
    1. Shaw AT, Yeap BY, Mino‐Kenudson M et al Clinical features and outcome of patients with non‐small‐cell lung cancer who harbor EML4‐ALK. J Clin Oncol 2009; 27: 4247–53.
    1. Soda M, Choi YL, Enomoto M et al Identification of the transforming EML4‐ALK fusion gene in non‐small‐cell lung cancer. Nature 2007; 448: 561–6.
    1. Sun YH, Ren Y, Fang Z et al Lung adenocarcinoma from East Asian never‐smokers is a disease largely defined by targetable oncogenic mutant kinases. J Clin Oncol 2010; 28: 4616–20.
    1. Inamura K, Takeuchi K, Togashi Y et al EML4‐ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 2008; 3: 13–7.
    1. Horn L, Pao W. EML4‐ALK: Honing in on a new target in non‐small‐cell lung cancer. J Clin Oncol 2009; 27: 4232–5.
    1. Choi YL, Takeuchi K, Soda M et al Identification of novel isoforms of the EML4‐ALK transforming gene in non‐small cell lung cancer. Cancer Res 2008; 68: 4971–6.
    1. Li TH, Maus MK, Desai SJ et al Large‐scale screening and molecular characterization of EML4‐ALK fusion variants in archival non‐small‐cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays. J Thorac Oncol 2014; 9: 18–25.
    1. Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 2013; 13: 685–700 (Published erratum appears in Nat Rev Cancer 2013; 13:820).
    1. Soda M, Takada S, Takeuchi K et al A mouse model for EML4‐ALK‐positive lung cancer. Proc Natl Acad Sci U S A 2008; 105: 19893–7.
    1. Koivunen JP, Mermel C, Zejnullahu K et al EML4‐ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 2008; 14: 4275–83.
    1. McDermott U, Iafrate AJ, Gray NS et al Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 2008; 68: 3389–95.
    1. Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non‐small‐cell lung cancer. N Engl J Med 2010;363:1693–703. (Published erratum appears in N Engl J Med 2011; 364: 588).
    1. Shaw AT, Yeap BY, Solomon BJ et al Effect of crizotinib on overall survival in patients with advanced non‐small‐cell lung cancer harbouring ALK gene rearrangement: A retrospective analysis. Lancet Oncol 2011; 12: 1004–12.
    1. Iragavarapu C, Mustafa M, Akinleye A et al Novel ALK inhibitors in clinical use and development. J Hematol Oncol 2015; 8: 17.
    1. Iyevleva AG, Raskin GA, Tiurin VI et al Novel ALK fusion partners in lung cancer. Cancer Lett 2015; 362: 116–21.
    1. Mano H. ALKoma: A cancer subtype with a shared target. Cancer Discov 2012; 2: 495–502.
    1. Rikova K, Guo A, Zeng Q et al Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131: 1190–203.
    1. Takeuchi K, Choi YL, Togashi Y et al KIF5B‐ALK, a novel fusion oncokinase identified by an immunohistochemistry‐based diagnostic system for ALK‐positive lung cancer. Clin Cancer Res 2009; 15 (9): 3143.
    1. Togashi Y, Soda M, Sakata S et al KLC1‐ALK: A novel fusion in lung cancer identified using a formalin‐fixed paraffin‐embedded tissue only. PLoS One 2012; 7: e31323.
    1. Li WB, Zhang J, Guo L, Chuai S, Shan L, Ying J. Combinational analysis of FISH and immunohistochemistry reveals rare genomic events in ALK fusion patterns in NSCLC that responds to crizotinib treatment. J Thorac Oncol 2017; 12: 94–101.
    1. Tian Q, Deng WJ, Li ZW. Identification of a novel crizotinib‐sensitive BCL11A‐ALK gene fusion in a nonsmall cell lung cancer patient. Eur Respir J 2017; 49: pii:1602149.
    1. Ali SM, Hensing T, Schrock AB et al Comprehensive genomic profiling identifies a subset of crizotinib‐responsive ALK‐rearranged non‐small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist 2016; 21: 762–70.
    1. Jung Y, Kim P, Jung Y et al Discovery of ALK‐PTPN3 gene fusion from human non‐small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer 2012; 51: 590–7.
    1. Drilon A, Wang L, Arcila ME et al Broad, hybrid capture‐based next‐generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin Cancer Res 2015; 21: 3631–9.
    1. Noh KW, Lee MS, Lee SE et al Molecular breakdown: A comprehensive view of anaplastic lymphoma kinase (ALK)‐rearranged non‐small cell lung cancer. J Pathol 2017; 243: 307–19.
    1. Shan L, Jiang P, Xu F et al BIRC6‐ALK, a novel fusion gene in ALK break‐apart FISH‐negative lung adenocarcinoma, responds to crizotinib. J Thorac Oncol 2015; 10: E37–9.
    1. Choi YL, Lira ME, Hong M et al A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol 2014; 9: 563–6.
    1. Fang DD, Zhang B, Gu Q et al HIP1‐ALK, a novel ALK fusion variant that responds to crizotinib. J Thorac Oncol 2014; 9: 285–94.
    1. Mano H. Non‐solid oncogenes in solid tumors: EML4‐ALK fusion genes in lung cancer. Cancer Sci 2008; 99: 2349–55.
    1. Thomas A, Liu SV, Subramaniam DS, Giaccone G. Refining the treatment of NSCLC according to histological and molecular subtypes. Nat Rev Clin Oncol 2015; 12: 511–26.
    1. Iwama E, Okamoto I, Harada T, Takayama K, Nakanishi Y. Development of anaplastic lymphoma kinase (ALK) inhibitors and molecular diagnosis in ALK rearrangement‐positive lung cancer. Onco Targets Ther 2014; 7: 375–85.
    1. Thunnissen E, Bubendorf L, Dietel M et al EML4‐ALK testing in non‐small cell carcinomas of the lung: A review with recommendations. Virchows Arch 2012; 461: 245–57.
    1. Tembuyser L, Tack V, Zwaenepoel K et al The relevance of external quality assessment for molecular testing for ALK positive non‐small cell lung cancer: Results from two pilot rounds show room for optimization. PLoS One 2014; 9: e112159.
    1. Marchetti A, Ardizzoni A, Papotti M et al Recommendations for the analysis of ALK gene rearrangements in non–small‐cell lung cancer: A consensus of the Italian Association of Medical Oncology and the Italian Society of Pathology and Cytopathology. J Thorac Oncol 2013; 8: 352–8.
    1. Cooper W, Fox S, O'Toole S et al National Working Group Meeting on ALK diagnostics in lung cancer. Asia Pac J Clin Oncol 2014; 10 (Suppl 2): 11–7.
    1. Cabillic F, Gros A, Dugay F et al Parallel FISH and Immunohistochemical studies of ALK status in 3244 non‐small‐cell lung cancers reveal major discordances. J Thorac Oncol 2014; 9: 295–306.
    1. Conde E, Hernandez S, Prieto M, Martinez R, Lopez‐Rios F. Profile of Ventana ALK (D5F3) companion diagnostic assay for non‐small‐cell lung carcinomas. Expert Rev Mol Diagn 2016; 16: 707–13.
    1. Minca EC, Portier BP, Wang Z et al ALK status testing in non–small cell lung carcinoma. A correlation between ultrasensitive IHC and FISH. J Mol Diagn 2013; 15: 341–6.
    1. Ying J, Guo L, Qiu T et al Diagnostic value of a novel fully automated immunochemistry assay for detection of ALK rearrangement in primary lung adenocarcinoma. Ann Oncol 2013; 24: 2589–93.
    1. Wang J, Cai Y, Dong Y et al Clinical characteristics and outcomes of patients with primary lung adenocarcinoma harboring ALK rearrangements detected by FISH, IHC, and RT‐PCR. PLoS One 2014; 9: e101551.
    1. Mattsson JSM, Brunnström H, Jabs V et al Inconsistent results in the analysis of ALK rearrangements in non‐small cell lung cancer. BMC Cancer 2016; 16: 603.
    1. Marchetti A, Pace MV, di Lorito A et al Validation of a new algorithm for a quick and easy RT‐PCR‐based ALK test in a large series of lung adenocarcinomas: Comparison with FISH, immunohistochemistry and next generation sequencing assays. Lung Cancer 2016; 99: 11–6.
    1. Weber B, Liu M, Sobkin P et al Successful treatment of hepatic oligometastases with stereotactic ablative radiotherapy and radiofrequency ablation in an anaplastic lymphoma kinase fusion‐positive lung cancer patient. J Med Radiat Sci 2016; 63: 67–70.
    1. Hout D, Schweitzer B, Lawrence K et al Performance of a RT‐PCR assay in comparison to FISH and immunohistochemistry for the detection of ALK in non‐small cell lung cancer. Cancer 2017; 9: pii. E99.
    1. Mitiushkina NV, Iyevleva AG, Poltoratskiy AN et al Detection of EGFR mutations andEML4‐ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol 2013; 121: 370–6.
    1. Tuononen K, Sarhadi VK, Wirtanen A et al Targeted resequencing reveals ALK fusions in non‐small cell lung carcinomas detected by FISH, immunohistochemistry, and real‐time RT‐PCR: A comparison of four methods. Biomed Res Int 2013; 2013: 757490.
    1. Yasuda H, de Figueiredo‐Pontes LL, Kobayashi S, Costa DB. Preclinical rationale for use of the clinically available multitargeted tyrosine kinase inhibitor crizotinib in ROS1‐translocated lung cancer. J Thorac Oncol 2012; 7: 1086–90.
    1. Ou SH, Bartlett CH, Mino‐Kenudson M, Cui J, Iafrate AJ. Crizotinib for the treatment of ALK‐rearranged non‐small cell lung cancer: A success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist 2012; 17: 1351–75.
    1. Camidge DR, Doebele RC. Treating ALK‐positive lung cancer‐‐early successes and future challenges. Nat Rev Clin Oncol 2012; 9: 268–77.
    1. Camidge DR, Bang YJ, Kwak EL et al Activity and safety of crizotinib in patients with ALK‐positive non‐small‐cell lung cancer: Updated results from a phase 1 study. Lancet Oncol 2012; 13: 1011–9.
    1. Kim DW, Mehra R, Tan DS et al Activity and safety of ceritinib in patients with ALK‐rearranged non‐small‐cell lung cancer (ASCEND‐1): Updated results from the multicentre, open‐label, phase 1 trial. Lancet Oncol 2016; 17: 452–63.
    1. Ou SH, Ahn JS, De Petris L et al Alectinib in crizotinib‐refractory ALK‐rearranged non‐small‐cell lung cancer: A phase II global study. J Clin Oncol 2016; 34: 661–8.
    1. Kim DW, Tiseo M, Ahn MJ et al Brigatinib in patients with crizotinib‐refractory anaplastic lymphoma kinase‐positive non‐small‐cell lung cancer: A randomized, multicenter phase II trial. J Clin Oncol 2017; 35: 2490–8.
    1. Horn L, Wakelee H, Reckamp KL et al MINI01.02: Response and plasma genotyping from phase i/ii trial of ensartinib (X‐396) in patients (pts) with ALK+ NSCLC: Topic: Medical oncology . J Thorac Oncol 2016; 11 (11 Suppl): S256–7.
    1. Soria JC, Tan DSW, Chiari R et al First‐line ceritinib versus platinum‐based chemotherapy in advanced ALK‐rearranged non‐small‐cell lung cancer (ASCEND‐4): A randomised, open‐label, phase 3 study. Lancet 2017; 389: 917–29.
    1. Shaw AT, Kim TM, Crinò L et al Ceritinib versus chemotherapy in patients with ALK‐rearranged non‐small‐cell lung cancer previously given chemotherapy and crizotinib (ASCEND‐5): A randomised, controlled, open‐label, phase 3 trial. Lancet Oncol 2017; 18: 874–86.

Source: PubMed

3
Subskrybuj