Modulation of Respiratory System by Limb Muscle Afferents in Intact and Injured Spinal Cord

Natalia A Shevtsova, Vitaliy Marchenko, Tatiana Bezdudnaya, Natalia A Shevtsova, Vitaliy Marchenko, Tatiana Bezdudnaya

Abstract

Breathing constantly adapts to environmental, metabolic or behavioral changes by responding to different sensory information, including afferent feedback from muscles. Importantly, not just respiratory muscle feedback influences respiratory activity. Afferent sensory information from rhythmically moving limbs has also been shown to play an essential role in the breathing. The present review will discuss the neuronal mechanisms of respiratory modulation by activation of peripheral muscles that usually occurs during locomotion or exercise. An understanding of these mechanisms and finding the most effective approaches to regulate respiratory motor output by stimulation of limb muscles could be extremely beneficial for people with respiratory dysfunctions. Specific attention in the present review is given to the muscle stimulation to treat respiratory deficits following cervical spinal cord injury.

Keywords: exercise; muscle afferents; muscle stimulation; respiration; spinal cord injury.

Figures

Figure 1
Figure 1
Schematic diagram of possible interactions between locomotor and respiratory systems. Brainstem respiratory network includes medulla and pons (see Section “Overview of Respiratory and Locomotor Networks”). Afferent inputs from limb muscles, joints and tendons are outlined by dashed line.
Figure 2
Figure 2
Simplified hypothetical diagram representing intraspinal connections between locomotor and respiratory spinal circuits. RMn – respiratory motoneuron. LMn – limb motoneuron. X? – shared interneuron that drives/modulates both RMn and LMn and receives afferent feedback from limb muscles. Possible direct inputs to RMn from limb muscle afferents are also shown.
Figure 3
Figure 3
Schematic diagram of cardio-respiratory interactions during exercise. Blue color represents afferent feedback from limb muscles. Red color shows afferent feedback from baro- and lung stretch receptors. NA – nucleus ambiguous; DMV – dorsal motor nucleus of vagus; PGNs – preganglionic neurons; Symp – sympathetic outputs; PSymp – parasympathetic output; X – vagus nerve. Open and filled big circles represent excitatory and inhibitory neuron populations, respectively. Filled small circles show inhibitory inputs, open small arrows indicate excitatory inputs. NTS was moved out from the block presenting brainstem respiratory network to show its inputs and outputs in greater details. Peripheral/central chemoreception was not included for simplicity.

References

    1. Abu-Khaber H. A., Abouelela A. M. Z., Abdelkarim E. M. (2013). Effect of electrical muscle stimulation on prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. Alexandria J. Med. 49 309–315. 10.1016/j.ajme.2013.03.011
    1. Amann M. (2012). Significance of Group III and IV muscle afferents for the endurance exercising human. Clin. Exp. Pharmacol. Physiol. 39 831–835. 10.1111/j.1440-1681.2012.05681.x
    1. Amann M., Blain G. M., Proctor L. T., Sebranek J. J., Pegelow D. F., Dempsey J. A. (2010). Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J. Appl. Physiol. (1985) 109 966–976. 10.1152/japplphysiol.00462.2010
    1. Andersen J. L., Aagaard P. (2010). Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport. Scand. J. Med. Sci. Sports 20(Suppl. 2), 32–38. 10.1111/j.1600-0838.2010.01196.x
    1. Armstrong R. B., Laughlin M. H. (1985). Metabolic indicators of fibre recruitment in mammalian muscles during locomotion. J. Exp. Biol. 115 201–213.
    1. Babic T., Ciriello J. (2004). Medullary and spinal cord projections from cardiovascular responsive sites in the rostral ventromedial medulla. J. Comp. Neurol. 469 391–412. 10.1002/cne.11024
    1. Bauer R. M., Iwamoto G. A., Waldrop T. G. (1990). Discharge patterns of ventrolateral medullary neurons during muscular contraction. Am. J. Physiol. 259(3 Pt 2), R606–R611. 10.1152/ajpregu.1990.259.3.R606
    1. Bellingham M. C., Lipski J. (1990). Respiratory interneurons in the C5 segment of the spinal cord of the cat. Brain Res. 533 141–146. 10.1016/0006-8993(90)91807-S
    1. Bernard J. F., Dallel R., Raboisson P., Villanueva L., Le Bars D. (1995). Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J. Comp. Neurol. 353 480–505. 10.1002/cne.903530403
    1. Bernard J. F., Huang G. F., Besson J. M. (1994). The parabrachial area: electrophysiological evidence for an involvement in visceral nociceptive processes. J. Neurophysiol. 71 1646–1660. 10.1152/jn.1994.71.5.1646
    1. Boggs D. F. (2002). Interactions between locomotion and ventilation in tetrapods. Compar. Biochem. Physiol. A Mol. Integr. Physiol. 133 269–288. 10.1016/S1095-6433(02)00160-5
    1. Bruce R. M. (2017). The control of ventilation during exercise: a lesson in critical thinking. Adv. Physiol. Educ. 41 539–547. 10.1152/advan.00086.2017
    1. Carvalho D. C., de Cassia Zanchetta M., Sereni J. M., Cliquet A. (2005). Metabolic and cardiorespiratory responses of tetraplegic subjects during treadmill walking using neuromuscular electrical stimulation and partial body weight support. Spinal Cord. 43 400–405. 10.1038/sj.sc.3101730
    1. Casey A., Constantin-Teodosiu D., Howell S., Hultman E., Greenhaff P. L. (1996). Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans. Am. J. Physiol. 271(1 Pt 1), E38–E43. 10.1152/ajpendo.1996.271.1.E38
    1. Casey K., Duffin J., Kelsey C. J., McAvoy G. V. (1987). The effect of treadmill speed on ventilation at the start of exercise in man. J. Physiol. 391 13–24. 10.1113/jphysiol.1987.sp016722
    1. Cechetto D. F., Standaert D. G., Saper C. B. (1985). Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J. Compar. Neurol. 240 153–160. 10.1002/cne.902400205
    1. Ciriello J., Calaresu F. R. (1977). Lateral reticular nucleus: a site of somatic and cardiovascular integration in the cat. Am. J. Physiol. 233 R100–R109. 10.1152/ajpregu.1977.233.3.R100
    1. Coombs J. S., Curtis D. R., Eccles J. C. (1959). The electrical constants of the motoneurone membrane. J. Physiol. 145 505–528. 10.1113/jphysiol.1959.sp006158
    1. Costa D., Cancelliero K. M., Ike D., Laranjeira T. L., Pantoni C. B., Borghi-Silva A. (2011). Strategy for respiratory exercise pattern associated with upper limb movements in COPD patients. Clinics (São Paulo) 66 299–305. 10.1590/S1807-59322011000200020
    1. Coupaud S., Gollee H., Hunt K. J., Fraser M. H., Allan D. B., McLean A. N. (2008). Arm-cranking exercise assisted by functional electrical stimulation in C6 tetraplegia: a pilot study. Technol. Health Care 16 415–427.
    1. Craig A. D. (1995). Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J. Compar. Neurol. 361 225–248. 10.1002/cne.903610204
    1. Dahmane R., Djordjevic S., Simunic B., Valencic V. (2005). Spatial fiber type distribution in normal human muscle histochemical and tensiomyographical evaluation. J. Biomech. 38 2451–2459. 10.1016/j.jbiomech.2004.10.020
    1. D’Angelo E., Torelli G. (1971). Neural stimuli increasing respiration during different types of exercise. J. Appl. Physiol. 30 116–121. 10.1152/jappl.1971.30.1.116
    1. Darlot F., Cayetanot F., Gauthier P., Matarazzo V., Kastner A. (2012). Extensive respiratory plasticity after cervical spinal cord injury in rats: axonal sprouting and rerouting of ventrolateral bulbospinal pathways. Exp. Neurol. 236 88–102. 10.1016/j.expneurol.2012.04.004
    1. de Carvalho D. C., Martins C. L., Cardoso S. D., Cliquet A. (2006). Improvement of metabolic and cardiorespiratory responses through treadmill gait training with neuromuscular electrical stimulation in quadriplegic subjects. Artif. Organs 30 56–63. 10.1111/j.1525-1594.2006.00180.x
    1. Decima E. E., von Euler C., Thoden U. (1969). Intercostal-to-phrenic reflexes in the spinal cat. Acta Physiol. Scand. 75 568–579. 10.1111/j.1748-1716.1969.tb04412.x
    1. Dejours P. (1964). Control of Respiration on Muscular Exercise. Handbook of Physiology, Respiration. Washington DC: American Physiological Society.
    1. Dempsey J. A., Blain G. M., Amann M. (2014). Are type III-IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans? J. Physiol. 592 463–474. 10.1113/jphysiol.2013.261925
    1. DiCarlo S. E., Collins H. L., Chen C. Y. (1994). Vagal afferents reflexly inhibit exercise in conscious rats. Med. Sci. Sports Exerc. 26 459–462. 10.1249/00005768-199404000-00010
    1. Dietz V., Muller R., Colombo G. (2002). Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(Pt 12), 2626–2634. 10.1093/brain/awf273
    1. DiMarco A. F., Romaniuk J. R., Von Euler C., Yamamoto Y. (1983). Immediate changes in ventilation and respiratory pattern associated with onset and cessation of locomotion in the cat. J. Physiol. 343 1–16. 10.1113/jphysiol.1983.sp014878
    1. Dobbins E. G., Feldman J. L. (1994). Brainstem network controlling descending drive to phrenic motoneurons in rat. J. Compar. Neurol. 347 64–86. 10.1002/cne.903470106
    1. Duffin J. (2014). The fast exercise drive to breathe. J. Physiol. 592 445–451. 10.1113/jphysiol.2013.258897
    1. Edgerton V. R., Smith J. L., Simpson D. R. (1975). Muscle fibre type populations of human leg muscles. Histochem. J. 7 259–266. 10.1007/BF01003594
    1. Eldridge F. L., Gill-Kumar P., Millhorn D. E., Waldrop T. G. (1981a). Spinal inhibition of phrenic motoneurones by stimulation of afferents from peripheral muscles. J. Physiol. 311 67–79. 10.1113/jphysiol.1981.sp013573
    1. Eldridge F. L., Millhorn D. E., Waldrop T. G. (1981b). Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211 844–846. 10.1126/science.7466362
    1. Eldridge F. L., Millhorn D. E., Kiley J. P., Waldrop T. G. (1985). Stimulation by central command of locomotion, respiration and circulation during exercise. Respir. Physiol. 59 313–337. 10.1016/0034-5687(85)90136-7
    1. Falgairolle M., de Seze M., Juvin L., Morin D., Cazalets J. R. (2006). Coordinated network functioning in the spinal cord: an evolutionary perspective. J. Physiol. Paris 100 304–316. 10.1016/j.jphysparis.2007.05.003
    1. Faria E. W., Faria I. E. (1998). Cardiorespiratory responses to exercises of equal relative intensity distributed between the upper and lower body. J. Sports Sci. 16 309–315. 10.1080/02640419808559359
    1. Feldman J. L., Mitchell G. S., Nattie E. E. (2003). Breathing: rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci. 26 239–266. 10.1146/annurev.neuro.26.041002.131103
    1. Fisher J. P., White M. J. (2004). Muscle afferent contributions to the cardiovascular response to isometric exercise. Exp. Physiol. 89 639–646. 10.1113/expphysiol.2004.028639
    1. Forster H. V., Haouzi P., Dempsey J. A. (2012). Control of breathing during exercise. Compar. Physiol. 2 743–777. 10.1002/cphy.c100045
    1. Gariepy J. F., Missaghi K., Chevallier S., Chartre S., Robert M., Auclair F., et al. (2012). Specific neural substrate linking respiration to locomotion. Proc. Natl. Acad. Sci. U.S.A. 109 E84–E92. 10.1073/pnas.1113002109
    1. Gariepy J. F., Missaghi K., Dubuc R. (2010). The interactions between locomotion and respiration. Prog. Brain Res. 187 173–188. 10.1016/B978-0-444-53613-6.00012-5
    1. Gauriau C., Bernard J. F. (2002). Pain pathways and parabrachial circuits in the rat. Exp. Physiol. 87 251–258. 10.1113/eph8702357
    1. Gigliotti F., Coli C., Bianchi R., Grazzini M., Stendardi L., Castellani C., et al. (2005). Arm exercise and hyperinflation in patients with COPD: effect of arm training. Chest 128 1225–1232. 10.1378/chest.128.3.1225
    1. Giraudin A., Cabirol-Pol M. J., Simmers J., Morin D. (2008). Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: spatiotemporal organization and responses to limb afferent stimulation. J. Neurophysiol. 99 2626–2640. 10.1152/jn.01298.2007
    1. Giraudin A., Le Bon-Jego M., Cabirol M. J., Simmers J., Morin D. (2012). Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat. J. Neurosci. 32 11841–11853. 10.1523/JNEUROSCI.0360-12.2012
    1. Griffiths T. L., Henson L. C., Whipp B. J. (1986). Influence of inspired oxygen concentration on the dynamics of the exercise hyperpnoea in man. J. Physiol. 380 387–403. 10.1113/jphysiol.1986.sp016292
    1. Guertin P., Angel M. J., Perreault M. C., McCrea D. A. (1995). Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. J. Physiol. 487 197–209. 10.1113/jphysiol.1995.sp020871
    1. Guertin P. A. (2012). Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3:183. 10.3389/fneur.2012.00183
    1. Guyenet P. G., Stornetta R. L. (2004). “The presympathetic cells of the rostral ventrolateral medulla (RVLM): anatomy, physiology and role in the control of circulation,” in Neural Mechanisms of Cardiovascular Regulation, eds Dun N. J., Machado B. H., Pilowsky P. M. (Boston, MA: Springer; ), 187–218.
    1. Hasnan N., Ektas N., Tanhoffer A. I., Tanhoffer R., Fornusek C., Middleton J. W., et al. (2013). Exercise responses during functional electrical stimulation cycling in individuals with spinal cord injury. Med. Sci. Sports Exerc. 45 1131–1138. 10.1249/MSS.0b013e3182805d5a
    1. Hayes S. G., Kaufman M. P. (2001). Gadolinium attenuates exercise pressor reflex in cats. Am. J. Physiol. Heart Circ. Physiol. 280 H2153–H2161. 10.1152/ajpheart.2001.280.5.H2153
    1. Hermanson O., Blomqvist A. (1996). Subnuclear localization of FOS-like immunoreactivity in the rat parabrachial nucleus after nociceptive stimulation. J. Comp. Neurol. 368 45–56.
    1. Hettinga D. M., Andrews B. J. (2008). Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med. 38 825–838. 10.2165/00007256-200838100-00003
    1. Hormigo K. M., Zholudeva L. V., Spruance V. M., Marchenko V., Cote M. P., Vinit S., et al. (2017). Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp. Neurol. 287(Pt 2), 276–287. 10.1016/j.expneurol.2016.08.018
    1. Hunt K. J., McLean A. N., Coupaud S., Gollee H. (2003). Upper-limb exercise in tetraplegia using functional electrical stimulation. ACNR 3 24–25.
    1. Iellamo F., Massaro M., Raimondi G., Peruzzi G., Legramante J. M. (1999). Role of muscular factors in cardiorespiratory responses to static exercise: contribution of reflex mechanisms. J. Appl. Physiol. (1985) 86 174–180. 10.1152/jappl.1999.86.1.174
    1. Iscoe S. (1981). Respiratory and stepping frequencies in conscious exercising cats. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 51 835–839. 10.1152/jappl.1981.51.4.835
    1. Iscoe S., Polosa C. (1976). Synchronization of respiratory frequency by somatic afferent stimulation. J. Appl. Physiol. 40 138–148. 10.1152/jappl.1976.40.2.138
    1. Iwamoto G. A., Kaufman M. P. (1987). Caudal ventrolateral medullary cells responsive to muscular contraction. J. Appl. Physiol. (1985) 62 149–157. 10.1152/jappl.1987.62.1.149
    1. Iwamoto G. A., Parnavelas J. G., Kaufman M. P., Botterman B. R., Mitchell J. H. (1984). Activation of caudal brainstem cell groups during the exercise pressor reflex in the cat as elucidated by 2-[14C]deoxyglucose. Brain Res. 304 178–182. 10.1016/0006-8993(84)90878-3
    1. Iwamoto G. A., Waldrop T. G., Bauer R. M., Mitchell J. H. (1989). Pressor responses to muscular contraction in the cat: contributions by caudal and rostral ventrolateral medulla. Prog. Brain Res. 81 253–263. 10.1016/S0079-6123(08)62015-4
    1. Johnson M. A., Polgar J., Weightman D., Appleton D. (1973). Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J. Neurol. Sci. 18 111–129. 10.1016/0022-510X(73)90023-3
    1. Jones S. E., Stanic D., Dutschmann M. (2016). Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat. Brain Struct. Funct. 221 4353–4368. 10.1007/s00429-015-1165-x
    1. Kalia M., Mei S. S., Kao F. F. (1981). Central projections from ergoreceptors (C fibers) in muscle involved in cardiopulmonary responses to static exercise. Circ. Res. 48(6 Pt 2), I48–I62.
    1. Kang J., Robertson R. J., Goss F. L., Dasilva S. G., Suminski R. R., Utter A. C., et al. (1997). Metabolic efficiency during arm and leg exercise at the same relative intensities. Med. Sci. Sports Exerc. 29 377–382. 10.1097/00005768-199703000-00013
    1. Kaufman M. P. (2010). Control of breathing during dynamic exercise by thin fiber muscle afferents. J. Appl. Physiol. (1985) 109 947–948. 10.1152/japplphysiol.00892.2010
    1. Kaufman M. P., Forster H. V. (2011). “Reflexes controlling circulatory, ventilatory and airway responses to exercise,” in Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems, eds Rowell L. B., Shepherd J. T. (Rockville, MD: American Physiological Society; ), 381–447.
    1. Kaufman M. P., Hayes S. G. (2002). The exercise pressor reflex. Clin. Auton Res. 12 429–439. 10.1007/s10286-002-0059-1
    1. Kaufman M. P., Longhurst J. C., Rybicki K. J., Wallach J. H., Mitchell J. H. (1983). Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55(1 Pt 1), 105–112. 10.1152/jappl.1983.55.1.105
    1. Kaufman M. P., Waldrop T. G., Rybicki K. J., Ordway G. A., Mitchell J. H. (1984). Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents. Cardiovasc. Res. 18 663–668. 10.1093/cvr/18.11.663
    1. Kawabe T., Kawabe K., Sapru H. N. (2007). Cardiovascular responses to somatosensory stimulation and their modulation by baroreflex mechanisms. Clin. Exp. Hypertens. 29 403–418. 10.1080/10641960701578402
    1. Kawahara K., Kumagai S., Nakazono Y., Miyamoto Y. (1988). Analysis of entrainment of respiratory rhythm by somatic afferent stimulation in cats using phase response curves. Biol. Cybernet. 58 235–242. 10.1007/BF00364129
    1. Kesavan K., Frank P., Cordero D. M., Benharash P., Harper R. M. (2016). Neuromodulation of limb proprioceptive afferents decreases apnea of prematurity and accompanying intermittent hypoxia and bradycardia. PLoS One 11:e0157349. 10.1371/journal.pone.0157349
    1. Kiehn O. (2006). Locomotor circuits in the mammalian spinal cord. Annu. Rev. Neurosci. 29 279–306. 10.1146/annurev.neuro.29.051605.112910
    1. Kiehn O., Iizuka M., Kudo N. (1992). Resetting from low threshold afferents of N-methyl-D-aspartate-induced locomotor rhythm in the isolated spinal cord-hindlimb preparation from newborn rats. Neurosci. Lett. 148 43–46. 10.1016/0304-3940(92)90800-M
    1. Kim D. H., Jang S. H. (2016). Effects of an upper-limb exercise program for improving muscular strength and range of movement on respiratory function of stroke patients. J. Phys. Ther. Sci. 28 2785–2788. 10.1589/jpts.28.2785
    1. Kjaer M., Perko G., Secher N. H., Boushel R., Beyer N., Pollack S., et al. (1994). Cardiovascular and ventilatory responses to electrically induced cycling with complete epidural anaesthesia in humans. Acta Physiol. Scand. 151 199–207. 10.1111/j.1748-1716.1994.tb09738.x
    1. Koizumi K., Ushiyama J., Brooks C. M. (1961). Muscle afferents and activity of respiratory neurons. Am. J. Physiol. 200 679–684. 10.1152/ajplegacy.1961.200.4.679
    1. Krogh A., Lindhard J. (1913). The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. 47 112–136. 10.1113/jphysiol.1913.sp001616
    1. Lane M. A. (2011). Spinal respiratory motoneurons and interneurons. Respir. Physiol. Neurobiol. 179 3–13. 10.1016/j.resp.2011.07.004
    1. Lane M. A., Lee K. Z., Fuller D. D., Reier P. J. (2009). Spinal circuitry and respiratory recovery following spinal cord injury. Respir. Physiol. Neurobiol. 169 123–132. 10.1016/j.resp.2009.08.007
    1. Lane M. A., White T. E., Coutts M. A., Jones A. L., Sandhu M. S., Bloom D. C., et al. (2008). Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat. J. Compar. Neurol. 511 692–709. 10.1002/cne.21864
    1. Le Foll-de, Moro D., Tordi N., Lonsdorfer E., Lonsdorfer J. (2005). Ventilation efficiency and pulmonary function after a wheelchair interval-training program in subjects with recent spinal cord injury. Arch. Phys. Med. Rehabil. 86 1582–1586. 10.1016/j.apmr.2005.03.018
    1. Le Gal J. P., Juvin L., Cardoit L., Morin D. (2016). Bimodal respiratory-locomotor neurons in the neonatal rat spinal cord. J. Neurosci. 36 926–937. 10.1523/JNEUROSCI.1825-15.2016
    1. Le Gal J. P., Juvin L., Cardoit L., Thoby-Brisson M., Morin D. (2014). Remote control of respiratory neural network by spinal locomotor generators. PLoS One 9:e89670. 10.1371/journal.pone.0089670
    1. Leite M. A., Osaku E. F., Albert J., Costa C., Garcia A. M., Czapiesvski F. D. N., et al. (2018). Effects of neuromuscular electrical stimulation of the quadriceps and diaphragm in critically Ill patients: a pilot study. Crit. Care Res. Pract. 2018:4298583. 10.1155/2018/4298583
    1. Lev-Tov A., Etlin A., Blivis D. (2010). Sensory-induced activation of pattern generators in the absence of supraspinal control. Ann. N. Y. Acad. Sci. 1198 54–62. 10.1111/j.1749-6632.2009.05424.x
    1. Lloyd D. P. (1943). Neuron patterns controlling transmission of ipsilateral hind limb reflexes in cat. J. Neurophysiol. 6 293–315. 10.1152/jn.1943.6.4.293
    1. Lois J. H., Rice C. D., Yates B. J. (2009). Neural circuits controlling diaphragm function in the cat revealed by transneuronal tracing. J. Appl. Physiol. (1985) 106 138–152. 10.1152/japplphysiol.91125.2008
    1. Marchenko V., Ghali M. G., Rogers R. F. (2015). The role of spinal GABAergic circuits in the control of phrenic nerve motor output. Am. J. Physiol. Regul. Integr. Compar. Physiol. 308 R916–R926. 10.1152/ajpregu.00244.2014
    1. Mateika J. H., Duffin J. (1995). A review of the control of breathing during exercise. Eur. J. Appl. Physiol. Occupat. Physiol. 71 1–27. 10.1007/BF00511228
    1. McCloskey D. I., Mitchell J. H. (1972a). Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol. 224 173–186. 10.1113/jphysiol.1972.sp009887
    1. McCloskey D. I., Mitchell J. H. (1972b). The use of differential nerve blocking techniques to show that the cardiovascular and respiratory reflexes originating in exercising muscle are not mediated by large myelinated afferents. J. Physiol. 222 50P–51P.
    1. McCord J. L., Kaufman M. P. (2010). “Reflex autonomic responses evoked by group III and IV muscle afferents,” in Translational Pain Research: From Mouse to Man, eds. Kruger L., Light A.R. (Boca Raton, FL: Taylor & Francis Group; ).
    1. Menetrey D., Roudier F., Besson J. M. (1983). Spinal neurons reaching the lateral reticular nucleus as studied in the rat by retrograde transport of horseradish peroxidase. J. Compar. Neurol. 220 439–452. 10.1002/cne.902200406
    1. Mense S. (2010). “Functional anatomy of muscle: muscle, nociceptors and afferent fibers,” in Muscle Pain: Understanding the Mechanisms, eds Mense S., Gerwin R. D. (Berlin: Springer; ), 17–48.
    1. Mitchell J. H. (2013). Neural circulatory control during exercise: early insights. Exp. Physiol. 98 867–878. 10.1113/expphysiol.2012.071001
    1. Mitchell J. H., Kaufman M. P., Iwamoto G. A. (1983). The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annu. Rev. Physiol. 45 229–242. 10.1146/annurev.ph.45.030183.001305
    1. Morin D., Viala D. (2002). Coordinations of locomotor and respiratory rhythms in vitro are critically dependent on hindlimb sensory inputs. J. Neurosci. 22 4756–4765. 10.1523/JNEUROSCI.22-11-04756.2002
    1. Mutluay F. K., Demir R., Ozyilmaz S., Caglar A. T., Altintas A., Gurses H. N. (2007). Breathing-enhanced upper extremity exercises for patients with multiple sclerosis. Clin. Rehabil. 21 595–602. 10.1177/0269215507075492
    1. Nash M. S., Jacobs P. L., Johnson B. M., Field-Fote E. (2004). Metabolic and cardiac responses to robotic-assisted locomotion in motor-complete tetraplegia: a case report. J. Spinal Cord Med. 27 78–82. 10.1080/10790268.2004.11753734
    1. Palisses R., Persegol L., Viala D. (1989). Evidence for respiratory interneurones in the C3-C5 cervical spinal cord in the decorticate rabbit. Exp Brain Res. 78 624–632. 10.1007/BF00230250
    1. Palisses R., Persegol L., Viala D., Viala G. (1988). Reflex modulation of phrenic activity through hindlimb passive motion in decorticate and spinal rabbit preparation. Neuroscience 24 719–728. 10.1016/0306-4522(88)90364-8
    1. Pedersen B. K. (2013). Muscle as a secretory organ. Compar. Physiol. 3 1337–1362. 10.1002/cphy.c120033
    1. Persegol L., Jordan M., Viala D., Fernandez C. (1988). Evidence for central entrainment of the medullary respiratory pattern by the locomotor pattern in the rabbit. Exp. Brain Res. 71 153–162. 10.1007/BF00247530
    1. Persegol L., Palisses R., Viala D. (1993). Characterization of hindlimb muscle afferents involved in ventilatory effects observed in decerebrate and spinal preparations. Exp. Brain Res. 92 495–501. 10.1007/BF00229038
    1. Poon C. S., Song G. (2015). Type III-IV muscle afferents are not required for steady-state exercise hyperpnea in healthy subjects and patients with COPD or heart failure. Respir. Physiol. Neurobiol. 216 78–85. 10.1016/j.resp.2015.04.007
    1. Potts J. T. (2001). Exercise and sensory integration. Role of the nucleus tractus solitarius. Ann. N. Y. Acad. Sci. 940 221–236. 10.1111/j.1749-6632.2001.tb03679.x
    1. Potts J. T. (2006). Inhibitory neurotransmission in the nucleus tractus solitarii: implications for baroreflex resetting during exercise. Exp. Physiol. 91 59–72. 10.1113/expphysiol.2005.032227
    1. Potts J. T., Rybak I. A., Paton J. F. (2005). Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci. 25 1965–1978. 10.1523/JNEUROSCI.3881-04.2005
    1. Rekha K., Vijayalakshmi A., Doss D. S. S., Anandh V. (2016). Effects of home based upper extremity exercise in chronic obstructive pulmonary disease. Int. J. Pharm. Clin. Res. 8 1351–1355.
    1. Ries A. L., Bauldoff G. S., Carlin B. W., Casaburi R., Emery C. F., Mahler D. A., et al. (2007). Pulmonary rehabilitation: joint ACCP/AACVPR evidence-based clinical practice guidelines. Chest 131(5 Suppl.), 4S–42S. 10.1378/chest.06-2418
    1. Rybak I. A., Smith J. C. (2009). “Computational modeling of the respiratory network,” in Encyclopedia of Neuroscience, eds Binder M. D., Hirokawa N., Windhorst U., Hirsch M. C. (Berlin: Springer-Verlag; ), 824–832.
    1. Saltin B., Gollnick P. D. (1983). “Skeletal muscle adaptability: significance for metabolism and performance,” in Handbook of Physiology – Skeletal Muscle, eds Peachy L. D., Adrian R. H., Geiger S. R. (Baltimore, MD: Williams & Wilkins; ), 555–631.
    1. Sandhu M. S., Dougherty B. J., Lane M. A., Bolser D. C., Kirkwood P. A., Reier P. J., et al. (2009). Respiratory recovery following high cervical hemisection. Respir. Physiol. Neurobiol. 169 94–101. 10.1016/j.resp.2009.06.014
    1. Sears T. A. (1964). The slow potentials of thoracic respiratory motoneurones and their relation to breathing. J. Physiol. 175 404–424. 10.1113/jphysiol.1964.sp007524
    1. Shin S. O., Kim N. S. (2017). Upper extremity resistance exercise with elastic bands for respiratory function in children with cerebral palsy. J. Phys. Ther. Sci. 29 2077–2080. 10.1589/jpts.29.2077
    1. Silva A. C., Neder J. A., Chiurciu M. V., Pasqualin D. C., da Silva R. C., Fernandez A. C., et al. (1998). Effect of aerobic training on ventilatory muscle endurance of spinal cord injured men. Spinal Cord 36 240–245. 10.1038/sj.sc.3100575
    1. Silva T. M., Aranda L. C., Paula-Ribeiro M., Oliveira D. M., Medeiros W. M., Vianna L. C., et al. (2018). Hyperadditive ventilatory response arising from interaction between the carotid chemoreflex and the muscle mechanoreflex in healthy humans. J. Appl. Physiol. (1985) 125 215–225. 10.1152/japplphysiol.00009.2018
    1. Simoneau J. A., Bouchard C. (1995). Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 9 1091–1095. 10.1096/fasebj.9.11.7649409
    1. Smith J. C., Abdala A. P., Borgmann A., Rybak I. A., Paton J. F. (2013). Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 36 152–162. 10.1016/j.tins.2012.11.004
    1. Smith J. C., Abdala A. P., Rybak I. A., Paton J. F. (2009). Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364 2577–2587. 10.1098/rstb.2009.0081
    1. Smith J. C., Feldman J. L. (1987). In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J. Neurosci. Methods 21 321–333. 10.1016/0165-0270(87)90126-9
    1. Standaert D. G., Watson S. J., Houghten R. A., Saper C. B. (1986). Opioid peptide immunoreactivity in spinal and trigeminal dorsal horn neurons projecting to the parabrachial nucleus in the rat. J. Neurosci. 6 1220–1226. 10.1523/JNEUROSCI.06-05-01220.1986
    1. Strange S., Secher N. H., Pawelczyk J. A., Karpakka J., Christensen N. J., Mitchell J. H., et al. (1993). Neural control of cardiovascular responses and of ventilation during dynamic exercise in man. J. Physiol. 470 693–704. 10.1113/jphysiol.1993.sp019883
    1. Sumi T. (1963). Organization of spinal respiratory neurons. Ann. N. Y. Acad. Sci. 109 561–570. 10.1111/j.1749-6632.1963.tb13487.x
    1. Terson, de Paleville D., McKay W., Aslan S., Folz R., Sayenko D.,et al. (2013). Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respir. Physiol. Neurobiol. 189 491–497. 10.1016/j.resp.2013.08.018
    1. Tibes U. (1977). Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles. Some evidence for involvement of group III or IV nerve fibers. Circ. Res. 41 332–341. 10.1161/01.RES.41.3.332
    1. Tiftik T., Gokkaya N. K., Malas F. U., Tunc H., Yalcin S., Ekiz T., et al. (2015). Does locomotor training improve pulmonary function in patients with spinal cord injury? Spinal Cord 53 467–470. 10.1038/sc.2014.251
    1. Turner D. L. (1991). Cardiovascular and respiratory control mechanisms during exercise: an integrated view. J. Exp. Biol. 160 309–340.
    1. Viala D. (1986). Evidence for direct reciprocal interactions between the central rhythm generators for spinal “respiratory” and locomotor activities in the rabbit. Exp. Brain Res. 63 225–232. 10.1007/BF00236841
    1. Viala D., Persegol L., Palisses R. (1987). Relationship between phrenic and hindlimb extensor activities during fictive locomotion. Neurosci. Lett. 74 49–52. 10.1016/0304-3940(87)90049-8
    1. Viala D., Vidal C., Freton E. (1979). Coordinated rhythmic bursting in respiratory and locomotor muscle nerves in the spinal rabbit. Neurosci. Lett. 11 155–159. 10.1016/0304-3940(79)90119-8
    1. Waldrop T. G., Mullins D. C., Millhorn D. E. (1986). Control of respiration by the hypothalamus and by feedback from contracting muscles in cats. Respir. Physiol. 64 317–328. 10.1016/0034-5687(86)90125-8
    1. Whipp B. J. (1994). Peripheral chemoreceptor control of exercise hyperpnea in humans. Med. Sci. Sports Exerc. 26 337–347. 10.1249/00005768-199403000-00010
    1. Whipp B. J., Ward S. A., Lamarra N., Davis J. A., Wasserman K. (1982). Parameters of ventilatory and gas exchange dynamics during exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 52 1506–1513. 10.1152/jappl.1982.52.6.1506
    1. Whitwam J. G. (1976). Classification of peripheral nerve fibres. An historical perspective. Anaesthesia 31 494–503. 10.1111/j.1365-2044.1976.tb12354.x
    1. Wilson J. M., Loenneke J. P., Jo E., Wilson G. J., Zourdos M. C., Kim J. S. (2012). The effects of endurance, strength, and power training on muscle fiber type shifting. J. Strength Cond. Res. 26 1724–1729. 10.1519/JSC.0b013e318234eb6f
    1. Yates B. J., Smail J. A., Stocker S. D., Card J. P. (1999). Transneuronal tracing of neural pathways controlling activity of diaphragm motoneurons in the ferret. Neuroscience 90 1501–1513. 10.1016/S0306-4522(98)00554-5
    1. Yazawa I. (2014). Reciprocal functional interactions between the brainstem and the lower spinal cord. Front. Neurosci. 8:124 10.3389/fnins.2014.00124
    1. Zholudeva L. V., Karliner J. S., Dougherty K. J., Lane M. A. (2017). Anatomical recruitment of spinal V2a interneurons into phrenic motor circuitry after high cervical spinal cord injury. J. Neurotrauma 34 3058–3065. 10.1089/neu.2017.5045
    1. Zholudeva L. V., Qiang L., Marchenko V., Dougherty K. J., Sakiyama-Elbert S. E., Lane M. A. (2018). The neuroplastic and therapeutic potential of spinal interneurons in the injured spinal cord. Trends Neurosci. 41 625–639. 10.1016/j.tins.2018.06.004

Source: PubMed

3
Subskrybuj