The Effect of Exercise Training on Gait, Balance, and Physical Fitness Asymmetries in Persons With Chronic Neurological Conditions: A Systematic Review of Randomized Controlled Trials

John W Farrell 3rd, Jordan Merkas, Lara A Pilutti, John W Farrell 3rd, Jordan Merkas, Lara A Pilutti

Abstract

Background: Persons with chronic neurological conditions (CNCs) often present with asymmetrical impairments, creating significant differences between contralateral limbs in body functions. These asymmetries have been associated with reduced mobility and balance, and are often targeted for reduction during rehabilitation. Exercise training has established benefits for persons with CNCs, and may have positive effects on asymmetry outcomes. Objectives: The purpose of this review was to summarize the current evidence for the effects exercise training on gait, balance, and physical fitness asymmetry in randomized control trials (RCTs) of persons with CNCs. Methods: A search of four electronic databases (EMBASE, CINAHL, SPORTdiscus, and ovidMEDLINE) was conducted following the structured Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: The search retrieved 3,493 articles, with 465 articles assessed for eligibly, and nine articles meeting the criteria for inclusion. Of the included articles, five incorporated resistance exercise, three incorporated aerobic exercise, and one incorporated combined exercise (i.e., resistance and aerobic exercise). Gait asymmetry improved significantly in four studies after resistance, aerobic, and combined exercise. Significant improvements in weight bearing asymmetry were reported in three studies after resistance exercise. One study reported significant improvements in both gait and balance asymmetry after resistance exercise. Conclusions: Preliminary evidence suggests that exercise training, as a component of rehabilitation, may have positive effects on gait and balance asymmetry in persons with CNCs. Several limitations of the current literature were noted, including a limited number of studies, combination of exercise with other rehabilitation modalities, a lack of reporting on exercise prescriptions (e.g., number of repetitions, intensity), and variability in the calculation of asymmetry outcomes. These limitations prevent definitive conclusions on the effects of exercise training on asymmetry outcomes. Future trials are needed to determine the potential of exercise training for reducing asymmetry in persons with CNCs.

Keywords: asymmetry; balance; exercise; gait; multiple sclerosis; stroke.

Copyright © 2020 Farrell, Merkas and Pilutti.

Figures

Figure 1
Figure 1
PRISMA (the preferred reporting items for systematic review and meta-analyses) flow diagram for the literature review process.

References

    1. Ada L., Dorsch S., Canning C. G. (2006). Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust. J. Physiother. 52, 241–248. 10.1016/S0004-9514(06)70003-4
    1. Ambrosini E., Ferrante S., Pedrocchi A., Ferrigno G., Guanziroli E., Molteni F. (2011). “A novel biofeedback cycling training to improve gait symmetry in stroke patients: a case series study,” in 2011 IEEE International Conference on Rehabilitation Robotics (Zurich: ), 1–6.
    1. Ammann B. C., Knols R. H., Baschung P., De Bie R. A., de Bruin E. D. (2014). Application of principles of exercise training in sub-acute and chronic stroke survivors: a systematic review. BMC Neurol. 14:167. 10.1186/s12883-014-0167-2
    1. Awad L. N., Palmer J. A., Pohlig R. T., Binder-Macleod S. A., Reisman D. S. (2015). Walking speed and step length asymmetry modify the energy cost of walking after stroke. Neurorehabil. Neural Repair 29, 416–423. 10.1177/1545968314552528
    1. Balasubramanian C. K., Bowden M. G., Neptune R. R., Kautz S. A. (2007). Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 88, 43–49. 10.1016/j.apmr.2006.10.004
    1. Benedict R. H., Holtzer R., Motl R. W., Foley F. W., Kaur S., Hojnacki D., et al. . (2011). Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. J. Int. Neuropsychol. Soc. 17, 643–653. 10.1017/S1355617711000403
    1. Bouchard C. E., Shephard R. J., Stephens T. E. (1994). “Physical activity, fitness, and health: international proceedings and consensus statement,” in International Consensus Symposium on Physical Activity, Fitness, and Health (Toronto, ON: Human Kinetics Publishers; ).
    1. Bowden M. G., Balasubramanian C. K., Neptune R. R., Kautz S. A. (2006). Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke 37, 872–876. 10.1161/01.STR.0000204063.75779.8d
    1. Broekmans T., Roelants M., Feys P., Alders G., Gijbels D., Hanssen I., et al. . (2011). Effects of long-term resistance training and simultaneous electro-stimulation on muscle strength and functional mobility in multiple sclerosis. Mult. Scler. J. 17, 468–477. 10.1177/1352458510391339
    1. Chon J., Kim H.-S., Lee J. H., Yoo S. D., Yun D. H., Kim D. H., et al. . (2018). Association between asymmetry in knee extension strength and balance in a community-dwelling elderly population: a cross-sectional analysis. Ann. Rehabil. Med. 42, 113–119. 10.5535/arm.2018.42.1.113
    1. Chung L. H., Remelius J. G., Van R. E., Kent-Braun J. A. (2008). Leg power asymmetry and postural control in women with multiple sclerosis. Med. Sci. Sports Exerc. 40, 1717–1724. 10.1249/MSS.0b013e31817e32a3
    1. Clarke P., Black S. E. (2005). Quality of life following stroke: negotiating disability, identity, and resources. J. Appl. Gerontol. 24, 319–336. 10.1177/0733464805277976
    1. Cruickshank T. M., Reyes A. R., Ziman M. R. (2015). A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or Parkinson disease. Medicine 94:e411 10.1097/MD.0000000000000411
    1. Cumming T. B., Marshall R. S., Lazar R. M. (2013). Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. Int. J. Stroke 8, 38–45. 10.1111/j.1747-4949.2012.00972.x
    1. DeLuca G. C., Yates R. L., Beale H., Morrow S. A. (2015). Cognitive impairment in multiple sclerosis: clinical, radiologic and pathologic insights. Brain Pathol. 25, 79–98. 10.1111/bpa.12220
    1. Djaldetti R., Ziv I., Melamed E. (2006). The mystery of motor asymmetry in Parkinson's disease. Lancet Neurol. 5, 796–802. 10.1016/S1474-4422(06)70549-X
    1. e Silva E. M. G. S., Ribeiro T. S., da Silva T. C. C., Costa M. F. P., Cavalcanti F. A. D. C., Lindquist A. R. R. (2017). Effects of constraint-induced movement therapy for lower limbs on measurements of functional mobility and postural balance in subjects with stroke: a randomized controlled trial. Top. Stroke Rehabil. 24, 555–561. 10.1080/10749357.2017.1366011
    1. Edwards T., Pilutti L. A. (2017). The effect of exercise training in adults with multiple sclerosis with severe mobility disability: a systematic review and future research directions. Mult. Scler. Relat. Disord. 16, 31–39. 10.1016/j.msard.2017.06.003
    1. Ellis R. G., Howard K. C., Kram R. (2013). The metabolic and mechanical costs of step time asymmetry in walking. Proc. R. Soc. B Biol. Sci. 280:20122784. 10.1098/rspb.2012.2784
    1. Escudero-Uribe S., Hochsprung A., Heredia-Camacho B., Izquierdo-Ayuso G. (2017). Effect of training exercises incorporating mechanical devices on fatigue and gait pattern in persons with relapsing-remitting multiple sclerosis. Physiother. Can. 69, 292–302. 10.3138/ptc.2016-19
    1. Hankey G. J., Spiesser J., Hakimi Z., Bego G., Carita P., Gabriel S. (2007). Rate, degree, and predictors of recovery from disability following ischemic stroke. Neurology 68, 1583–1587. 10.1212/01.wnl.0000260967.77422.97
    1. Hasan S. M., Rancourt S. N., Austin M. W., Ploughman M. (2016). Defining optimal aerobic exercise parameters to affect complex motor and cognitive outcomes after stroke: a systematic review and synthesis. Neural Plast. 2016:2961573. 10.1155/2016/2961573
    1. Heymann D. L., Prentice T., Reinders L. T. (2007). The World Health Report 2007: A Safer Future: Global Public Health Security in the 21st Century. Geneva: World Health Organization.
    1. Jørgensen L., Crabtree N. J., Reeve J., Jacobsen B. K. (2000). Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone 27, 701–707. 10.1016/S8756-3282(00)00374-4
    1. Kim C.-Y., Lee J.-S., Kim H.-D. (2017). Comparison of the effect of lateral and backward walking training on walking function in patients with poststroke hemiplegia: a pilot randomized controlled trial. Am. J. Phys. Med. Rehabil. 96, 61–67. 10.1097/PHM.0000000000000541
    1. Kim C.-Y., Lee J.-S., Kim H.-D., Kim J.-S. (2015). The effect of progressive task-oriented training on a supplementary tilt table on lower extremity muscle strength and gait recovery in patients with hemiplegic stroke. Gait Posture 41, 425–430. 10.1016/j.gaitpost.2014.11.004
    1. Kim C. M., Eng J. J. (2003). Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 18, 23–28. 10.1016/S0966-6362(02)00122-4
    1. LaRoche D. P., Cook S. B., Mackala K. (2012). Strength asymmetry increases gait asymmetry and variability in older women. Med. Sci. Sports Exerc. 44, 2172–2181. 10.1249/MSS.0b013e31825e1d31
    1. Larson R. D., McCully K. K., Larson D. J., Pryor W. M., White L. J. (2013). Bilateral differences in lower-limb performance in individuals with multiple sclerosis. J. Rehabil. Res. Dev. 50, 215–222. 10.1682/JRRD.2011.10.0189
    1. Latimer-Cheung A. E., Pilutti L. A., Hicks A. L., Ginis K. A. M., Fenuta A. M., MacKibbon K. A., et al. (2013). Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development. Arch. Phys. Med. Rehabil. 94, 1800–1828. 10.1016/j.apmr.2013.04.020
    1. Lauziere S., Betschart M., Aissaoui R., Nadeau S. (2014). Understanding spatial and temporal gait asymmetries in individuals post stroke. Int. J. Phys. Med. Rehabil. 2:3 10.4172/2329-9096.1000201
    1. Lewek M. D., Braun C. H., Wutzke C., Giuliani C. (2018). The role of movement errors in modifying spatiotemporal gait asymmetry post stroke: a randomized controlled trial. Clin. Rehabil. 32, 161–172. 10.1177/0269215517723056
    1. Lewek M. D., Feasel J., Wentz E., Brooks F. P., Whitton M. C. (2012). Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke: a case series. Phys. Ther. 92, 748–756. 10.2522/ptj.20110206
    1. Liu M., Chen J., Fan W., Mu J., Zhang J., Wang L., et al. . (2016). Effects of modified sit-to-stand training on balance control in hemiplegic stroke patients: a randomized controlled trial. Clin. Rehabil. 30, 627–636. 10.1177/0269215515600505
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G., Group T. P. (2009). preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 6:e1000097 10.1371/journal.pmed.1000097
    1. Motl R. W., Pilutti L. A. (2012). The benefits of exercise training in multiple sclerosis. Nat. Rev. Neurol. 8, 487–497. 10.1038/nrneurol.2012.136
    1. Motl R. W., Sandroff B. M. (2015). Benefits of exercise training in multiple sclerosis. Curr. Neurol. Neurosci. Rep. 15:62 10.1007/s11910-015-0585-6
    1. Olney S. J., Griffin M. P., McBride I. D. (1994). Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Phys Ther. 74, 872–885. 10.1093/ptj/74.9.872
    1. Pang M. Y., Charlesworth S. A., Lau R. W., Chung R. C. (2013). Using aerobic exercise to improve health outcomes and quality of life in stroke: evidence-based exercise prescription recommendations. Cerebrovasc. Dis. 35, 7–22. 10.1159/000346075
    1. Patterson K. K., Gage W. H., Brooks D., Black S. E., McIlroy W. E. (2010). Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture 31, 241–246. 10.1016/j.gaitpost.2009.10.014
    1. Patterson K. K., Mansfield A., Biasin L., Brunton K., Inness E. L., McIlroy W. E. (2015). Longitudinal changes in poststroke spatiotemporal gait asymmetry over inpatient rehabilitation. Neurorehabil. Neural Repair. 29, 153–162. 10.1177/1545968314533614
    1. Patterson K. K., Parafianowicz I., Danells C. J., Closson V., Verrier M. C., Staines W. R., et al. . (2008). Gait asymmetry in community-ambulating stroke survivors. Arch. Phys. Med. Rehabil. 89, 304–310. 10.1016/j.apmr.2007.08.142
    1. Platta M. E., Ensari I., Motl R. W., Pilutti L. A. (2016). Effect of exercise training on fitness in multiple sclerosis: a meta-analysis. Arch. Phys. Med. Rehabil. 97, 1564–1572. 10.1016/j.apmr.2016.01.023
    1. Portegijs E., Sipilä S., Alen M., Kaprio J., Koskenvuo M., Tiainen K., et al. . (2005). Leg extension power asymmetry and mobility limitation in healthy older women. Arch. Phys. Med. Rehabil. 86, 1838–1842. 10.1016/j.apmr.2005.03.012
    1. Reisman D. S., McLean H., Keller J., Danks K. A., Bastian A. J. (2013). repeated split-belt treadmill training improves poststroke step length asymmetry. Neurorehabil. Neural Repair 27, 460–468. 10.1177/1545968312474118
    1. Rudroff T., Proessl F. (2018). Effects of muscle function and limb loading asymmetries on gait and balance in people with multiple sclerosis. Front. Physiol. 9:531. 10.3389/fphys.2018.00531
    1. Sandroff B. M., Sosnoff J. J., Motl R. W. (2013). Physical fitness, walking performance, and gait in multiple sclerosis. J. Neurol. Sci. 328, 70–76. 10.1016/j.jns.2013.02.021
    1. Saunders D. H., Sanderson M., Hayes S., Kilrane M., Greig C. A., Brazzelli M., et al. (2016). Physical fitness training for stroke patients. Cochrane Database Syst. Rev. 3:CD003316 10.1002/14651858.CD003316.pub6
    1. Sheikh M., Azarpazhooh M. R., Hosseini H. A. (2016). Randomized comparison trial of gait training with and without compelled weight-shift therapy in individuals with chronic stroke. Clin. Rehabil. 30, 1088–1096. 10.1177/0269215515611467
    1. Sheikh M., Hosseini H. A. (2019). The association between spatiotemporal gait asymmetry and walking balance in people post stroke. J. Rehabil Sci Res. 6, 117–122. 10.30476/jrsr.2019.81226
    1. Smart N. A., Waldron M., Ismail H., Giallauria F., Vigorito C., Cornelissen V., et al. . (2015). Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int. J. Evid. Based Healthc. 13, 9–18. 10.1097/XEB.0000000000000020
    1. Straight C. R., Brady A. O., Evans E. M. (2016). Asymmetry in leg extension power impacts physical function in community-dwelling older women. Menopause 23, 410–416. 10.1097/GME.0000000000000543
    1. Sun Y., Ledwell N. M., Boyd L. A., Zehr E. P. (2018). Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms. Exp. Brain Res. 236, 2009–2021. 10.1007/s00221-018-5275-6
    1. Sungkarat S., Fisher B. E., Kovindha A. (2011). Efficacy of an insole shoe wedge and augmented pressure sensor for gait training in individuals with stroke: a randomized controlled trial. Clin. Rehabil. 25, 360–369. 10.1177/0269215510386125
    1. Teasell R. W., Bhogal S. K., Foley N. C., Speechley M. R. (2003). Gait retraining post stroke. Top. Stroke Rehabil. 10, 34–65. 10.1310/UDXE-MJFF-53V2-EAP0
    1. Tung F.-L., Yang Y.-R., Lee C.-C., Wang R.-Y. (2010). Balance outcomes after additional sit-to-stand training in subjects with stroke: a randomized controlled trial. Clin. Rehabil. 24, 533–542. 10.1177/0269215509360751
    1. Zeiler S. R., Krakauer J. W. (2013). The interaction between training and plasticity in the post-stroke brain. Curr. Opin. Neurol. 26, 609–616. 10.1097/WCO.0000000000000025

Source: PubMed

3
Subskrybuj