Targeting Affective Mood Disorders With Ketamine to Prevent Chronic Postsurgical Pain

Dianna E Willis, Peter A Goldstein, Dianna E Willis, Peter A Goldstein

Abstract

The phencyclidine-derivative ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one] was added to the World Health Organization's Model List of Essential Medicines in 1985 and is also on the Model List of Essential Medicines for Children due to its efficacy and safety as an intravenous anesthetic. In sub-anesthetic doses, ketamine is an effective analgesic for the treatment of acute pain (such as may occur in the perioperative setting). Additionally, ketamine may have efficacy in relieving some forms of chronic pain. In 2019, Janssen Pharmaceuticals received regulatory-approval in both the United States and Europe for use of the S-enantiomer of ketamine in adults living with treatment-resistant major depressive disorder. Pre-existing anxiety/depression and the severity of postoperative pain are risk factors for development of chronic postsurgical pain. An important question is whether short-term administration of ketamine can prevent the conversion of acute postsurgical pain to chronic postsurgical pain. Here, we have reviewed ketamine's effects on the biopsychological processes underlying pain perception and affective mood disorders, focusing on non-NMDA receptor-mediated effects, with an emphasis on results from human trials where available.

Keywords: HCN channel; dissociation; ketamine; oceanic boundlessness; out-of-body experience; pain.

Conflict of interest statement

PG is a co-inventor on patents related to the development of alkylphenols for the treatment of neuropathic pain and both PG and DW serve on the Scientific Advisory Board for Akelos, Inc., a research-based biotechnology company that has secured a licensing agreement for the use of those patents.

Copyright © 2022 Willis and Goldstein.

Figures

Figure 1
Figure 1
Ketamine structure. Ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one] contains a chiral center at C-2 of the cyclohexanone ring (numbered as shown), which gives rise to the two stereoisomers shown.
Figure 2
Figure 2
Primary metabolites of ketamine. Ketamine exists in (S) and (R) configurations (see Figure 1). Each is metabolized to several primary metabolites, with the relevant hepatic enzymatic pathways shown in red (primary pathways are indicated by solid arrows, secondary/minor pathways by dotted arrows). Data from (9, 10).
Figure 3
Figure 3
Neuroanatomical and functional networks relevant to ketamine's dissociate properties. (A) Map illustrating the relative anatomic position of the temporoparietal junction (TPJ) and the inferior parietal lobe (IPL). Maps are depicted on the flattened brain surface of the PALS atlas (109). Legend and image modified from Geng and Vossel (110) Figure 2 with permission under the terms of the Creative Commons Site License (https://creativecommons.org/licenses/by/4.0/). (B) Relevant structures that comprise the posterior medial cortex (PMC) as determined by whole-brain activation profiles. Image modified from Bzdok et al. (111) Figure 4 with permission. (C) Shown are two dissociated networks (A and B) near the default mode network (DMN) in a single subject. The dashed boxes highlight nine cortical zones where neighboring representations of the two networks were found, including: 1) dorsolateral prefrontal cortex (PFC), 2) inferior PFC, 3) lateral temporal cortex, 4) inferior parietal lobule (IPL) extending into the temporoparietal junction (TPJ), 5) posteromedial cortex (PMC), 6) midcingulate cortex, 7) dorsomedial PFC, 8) ventromedial PFC, and 9) anteromedial PFC. Note the proximity of zones 4 (TPJ/IPL) and 5 (PMC). Legend and image modified from Braga and Buckner (112) Figure 3 with permission under the terms of the Creative Commons Site License (https://creativecommons.org/licenses/by/4.0/). (D) Regions of interest that form the default mode network. Image modified from Krönke et al. (113) Figure 1 with permission.

References

    1. Schwenk ES, Viscusi ER, Buvanendran A, Hurley RW, Wasan AD, Narouze S, et al. . Consensus guidelines on the use of intravenous ketamine infusions for acute pain management from the American society of regional anesthesia and pain medicine, the American academy of pain medicine, and the American society of anesthesiologists. Reg Anesth Pain Med. (2018) 43:456–66. 10.1097/AAP.0000000000000806
    1. Brinck EC, Tiippana E, Heesen M, Bell RF, Straube S, Moore RA, et al. . Perioperative intravenous ketamine for acute postoperative pain in adults. Cochrane Database Syst Rev. (2018) 12:CD012033. 10.1002/14651858.CD012033.pub4
    1. Brinck ECV, Maisniemi K, Kankare J, Tielinen L, Tarkkila P, Kontinen VK. Analgesic effect of intraoperative intravenous S-ketamine in opioid-naive patients after major lumbar fusion surgery is temporary and not dose-dependent: a randomized, double-blind, placebo-controlled clinical trial. Anesth Analg. (2021) 132:69–79. 10.1213/ANE.0000000000004729
    1. Cohen SP, Bhatia A, Buvanendran A, Schwenk ES, Wasan AD, Hurley RW, et al. . Consensus guidelines on the use of intravenous ketamine infusions for chronic pain from the American society of regional anesthesia and pain medicine, the American academy of pain medicine, and the american society of anesthesiologists. Reg Anesth Pain Med. (2018) 43:521–46. 10.1097/AAP.0000000000000808
    1. Orhurhu V, Orhurhu MS, Bhatia A, Cohen SP. Ketamine infusions for chronic pain: a systematic review and meta-analysis of randomized controlled trials. Anesth Analg. (2019) 129:241–54. 10.1213/ANE.0000000000004185
    1. Michelet D, Brasher C, Horlin AL, Bellon M, Julien-Marsollier F, Vacher T, et al. . Ketamine for chronic non-cancer pain: a meta-analysis and trial sequential analysis of randomized controlled trials. Eur J Pain. (2018) 22:632–46. 10.1002/ejp.1153
    1. Fda . Approves New Nasal Spray Medication for Treatment-Resistant Depression. Available Only at a Certified Doctor's Office or Clinic: Food and Drug Administration (2019). Available online at: .
    1. Spravato (Esketamine): European Medicines Agency . Available online at: .
    1. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. . Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. (2018) 70:621–60. 10.1124/pr.117.015198
    1. Rao LK, Flaker AM, Friedel CC, Kharasch ED. Role of cytochrome P4502b6 polymorphisms in ketamine metabolism and clearance. Anesthesiology. (2016) 125:1103–12. 10.1097/ALN.0000000000001392
    1. Lumsden EW, Troppoli TA, Myers SJ, Zanos P, Aracava Y, Kehr J, et al. . Antidepressant-Relevant concentrations of the ketamine metabolite (2R6R)-Hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci USA. (2019) 116:5160–9. 10.1073/pnas.1816071116
    1. Little B, Chang T, Chucot L, Dill WA, Enrile LL, Glazko AJ, et al. . Study of ketamine as an obstetric anesthetic agent. AmJ Obstetrics Gynecol. (1972) 113:247–60. 10.1016/0002-9378(72)90774-0
    1. Grant IS, Nimmo WS, McNicol LR, Clements JA. Ketamine disposition in children and adults. Br J Anaesth. (1983) 55:1107–11. 10.1093/bja/55.11.1107
    1. Sleigh J, Pullon RM, Vlisides PE, Warnaby CE. Electroencephalographic slow wave dynamics and loss of behavioural responsiveness induced by ketamine in human volunteers. Br J Anaesth. (2019) 123:592–600. 10.1016/j.bja.2019.07.021
    1. White PF, Schuttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ. Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth. (1985) 57:197–203. 10.1093/bja/57.2.197
    1. Clements JA, Nimmo WS. Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth. (1981) 53:27–30. 10.1093/bja/53.1.27
    1. Grant IS, Nimmo WS, Clements JA. Pharmacokinetics and analgesic effects of I.M. And oral ketamine. Br J Anaesth. (1981) 53:805–10. 10.1093/bja/53.8.805
    1. Clements JA, Nimmo WS, Grant IS. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J Pharmaceut Sci. (1982) 71:539–42. 10.1002/jps.2600710516
    1. Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, et al. . Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology. (2020) 45:1398–404. 10.1038/s41386-020-0663-6
    1. Perez-Ruixo C, Rossenu S, Zannikos P, Nandy P, Singh J, Drevets WC, et al. . Population pharmacokinetics of esketamine nasal spray and its metabolite Noresketamine in healthy subjects and patients with treatment-resistant depression. Clin Pharmacokinet. (2021) 60:501–16. 10.1007/s40262-020-00953-4
    1. Zarate CA, Jr, Brutsche N, Laje G, Luckenbaugh DA, Venkata SL, et al. . Relationship of ketamine's plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry. (2012) 72:331–8. 10.1016/j.biopsych.2012.03.004
    1. Goldstein PA. HCN1 channels as targets for volatile anesthetics: coming to the fore. Anesth Analg. (2015) 121:594–6. 10.1213/ANE.0000000000000871
    1. Chen X, Shu S, Bayliss DA. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci. (2009) 29:600–9. 10.1523/JNEUROSCI.3481-08.2009
    1. Zhou C, Douglas JE, Kumar NN, Shu S, Bayliss DA, Chen X. Forebrain hcn1 channels contribute to hypnotic actions of ketamine. Anesthesiology. (2013) 118:785–95. 10.1097/ALN.0b013e318287b7c8
    1. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-Activated cation channels: from genes to function. Physiol Rev. (2009) 89:847–85. 10.1152/physrev.00029.2008
    1. Wahl-Schott C, Biel M. HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci. (2009) 66:470–94. 10.1007/s00018-008-8525-0
    1. Robinson RB, Siegelbaum SA. Hyperpolarization-Activated cation currents: from molecules to physiological function. Annu Rev Physiol. (2003) 65:453–80. 10.1146/annurev.physiol.65.092101.142734
    1. He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog Neurobiol. (2014) 112:1–23. 10.1016/j.pneurobio.2013.10.001
    1. Santoro B, Shah MM. Hyperpolarization-activated cyclic nucleotide-gated channels as drug targets for neurological disorders. Ann Rev Pharmacol Toxicol. (2020) 60:109–31. 10.1146/annurev-pharmtox-010919-023356
    1. Much B, Wahl-Schott C, Zong X, Schneider A, Baumann L, Moosmang S, et al. . Role of subunit heteromerization and N-linked glycosylation in the formation of functional hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem. (2003) 278:43781–6. 10.1074/jbc.M306958200
    1. Moosmang S, Biel M, Hofmann F, Ludwig A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol Chem. (1999) 380:975–80. 10.1515/BC.1999.121
    1. Notomi T, Shigemoto R. Immunohistochemical localization of ih channel subunits, Hcn1-4, in the rat brain. J Comp Neurol. (2004) 471:241–76. 10.1002/cne.11039
    1. Chen S, Wang J, Siegelbaum SA. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol. (2001) 117:491–504. 10.1085/jgp.117.5.491
    1. Gao LL, McMullan S, Djouhri L, Acosta C, Harper AA, Lawson SN. Expression and properties of hyperpolarization-activated current in rat dorsal root ganglion neurons with known sensory function. J Physiol. (2012) 590(Pt 19):4691–705. 10.1113/jphysiol.2012.238485
    1. Ku SM, Han MH. Hcn channel targets for novel antidepressant treatment. Neurotherapeutics. (2017) 14:698–715. 10.1007/s13311-017-0538-7
    1. Kim CS, Johnston D. A possible link between Hcn channels and depression. Chronic Stress (Thousand Oaks). (2018) 2:2470547018787781. 10.1177/2470547018787781
    1. Hirota K, Hashimoto Y, Lambert DG. Interaction of intravenous anesthetics with recombinant human M1-M3 muscarinic receptors expressed in chinese hamster ovary cells. Anesth Analg. (2002) 95:1607–10. 10.1097/00000539-200212000-00025
    1. Yamakura T, Chavez-Noriega LE, Harris RA. Subunit-dependent inhibition of human neuronal nicotinic acetylcholine receptors and other ligand-gated ion channels by dissociative anesthetics ketamine and dizocilpine. Anesthesiology. (2000) 92:1144–53. 10.1097/00000542-200004000-00033
    1. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. . Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol. (2013) 698:228–34. 10.1016/j.ejphar.2012.11.023
    1. Kapur S, Seeman P. Nmda receptor antagonists ketamine and pcp have direct effects on the dopamine D(2) and serotonin 5-HT(2) receptors-implications for models of schizophrenia. Mol Psychiatry. (2002) 7:837–44. 10.1038/sj.mp.4001093
    1. Roth BL, Gibbons S, Arunotayanun W, Huang XP, Setola V, Treble R, et al. . The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate nmda receptor. PLoS ONE. (2013) 8:e59334. 10.1371/journal.pone.0059334
    1. Can A, Zanos P, Moaddel R, Kang HJ, Dossou KS, Wainer IW, et al. . Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters. J Pharmacol Exp Ther. (2016) 359:159–70. 10.1124/jpet.116.235838
    1. Jordan S, Chen R, Fernalld R, Johnson J, Regardie K, Kambayashi J, et al. . In vitro biochemical evidence that the psychotomimetics phencyclidine, ketamine and dizocilpine (MK-801) are inactive at cloned human and rat dopamine D2 receptors. Eur J Pharmacol. (2006) 540:53–6. 10.1016/j.ejphar.2006.04.026
    1. Ho MF, Correia C, Ingle JN, Kaddurah-Daouk R, Wang L, Kaufmann SH, et al. . Ketamine and ketamine metabolites as novel estrogen receptor ligands: induction of cytochrome P450 and AMPA glutamate receptor gene expression. Biochem Pharmacol. (2018) 152:279–92. 10.1016/j.bcp.2018.03.032
    1. Morris PJ, Moaddel R, Zanos P, Moore CE, Gould TD, Zarate CA, et al. . Synthesis and N-methyl-D-aspartate (NMDA) receptor activity of ketamine metabolites. Org Lett. (2017) 19:4572–5. 10.1021/acs.orglett.7b02177
    1. Parsons CG, Quack G, Bresink I, Baran L, Przegalinski E, Kostowski W, et al. . Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology. (1995) 34:1239–58. 10.1016/0028-3908(95)00092-K
    1. Hirota K, Okawa H, Appadu BL, Grandy DK, Devi LA, Lambert DG. Stereoselective interaction of ketamine with recombinant mu, kappa, and delta opioid receptors expressed in Chinese hamster ovary cells. Anesthesiology. (1999) 90:174–82. 10.1097/00000542-199901000-00023
    1. Hirota K, Sikand KS, Lambert DG. Interaction of ketamine with mu2 opioid receptors in sh-sy5y human neuroblastoma cells. J Anesth. (1999) 13:107–9. 10.1007/s005400050035
    1. Nemeth CL, Paine TA, Rittiner JE, Beguin C, Carroll FI, Roth BL, et al. . Role of kappa-opioid receptors in the effects of salvinorin a and ketamine on attention in rats. Psychopharmacology (Berl). (2010) 210:263–74. 10.1007/s00213-010-1834-7
    1. Robson MJ, Elliott M, Seminerio MJ, Matsumoto RR. Evaluation of Sigma (Σ) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol. (2012) 22:308–17. 10.1016/j.euroneuro.2011.08.002
    1. Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, et al. . Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology. (1998) 88:768–74. 10.1097/00000542-199803000-00029
    1. Zhao Y, Sun L. Antidepressants modulate the in vitro inhibitory effects of propofol and ketamine on norepinephrine and serotonin transporter function. J Clin Neurosci. (2008) 15:1264–9. 10.1016/j.jocn.2007.11.007
    1. Todorovic SM, Perez-Reyes E, Lingle CJ. Anticonvulsants but not general anesthetics have differential blocking effects on different t-type current variants. Mol Pharmacol. (2000) 58:98–108. 10.1124/mol.58.1.98
    1. Denson DD, Eaton DC. Ketamine inhibition of large conductance Ca2+-activated K+ channels is modulated by intracellular Ca2+. Am J Physiol. (1994) 267(5 Pt 1):C1452–8. 10.1152/ajpcell.1994.267.5.C1452
    1. Ko SH, Lee SK, Han YJ, Choe H, Kwak YG, Chae SW, et al. . Blockade of myocardial ATP-sensitive potassium channels by ketamine. Anesthesiology. (1997) 87:68–74. 10.1097/00000542-199707000-00010
    1. Dreixler JC, Jenkins A, Cao YJ, Roizen JD, Houamed KM. Patch-clamp analysis of anesthetic interactions with recombinant SK2 Subtype neuronal calcium-activated potassium channels. Anesth Analg. (2000) 90:727–32. 10.1097/00000539-200003000-00040
    1. Haeseler G, Tetzlaff D, Bufler J, Dengler R, Munte S, Hecker H, et al. . Blockade of voltage-operated neuronal and skeletal muscle sodium channels by S(+)- and R(-)-ketamine. Anesth Analg. (2003) 96:1019–26. 10.1213/01.ANE.0000052513.91900.D5
    1. Sleigh J, Harvey M, Denny B. Ketamine-more mechanisms of action than just nmda blockade. Trends Anaesthesia Crit Care. (2014) 4:76–81. 10.1016/j.tacc.2014.03.002
    1. Jouguelet-Lacoste J, La Colla L, Schilling D, Chelly JE. The use of intravenous infusion or single dose of low-dose ketamine for postoperative analgesia: a review of the current literature. Pain Med. (2015) 16:383–403. 10.1111/pme.12619
    1. Wang L, Johnston B, Kaushal A, Cheng D, Zhu F, Martin J. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: a systematic review and meta-analysis of randomized trials. Can J Anaesth. (2016) 63:311–25. 10.1007/s12630-015-0551-4
    1. Assouline B, Tramer MR, Kreienbuhl L, Elia N. Benefit and harm of adding ketamine to an opioid in a patient-controlled analgesia device for the control of postoperative pain: systematic review and meta-analyses of randomized controlled trials with trial sequential analyses. Pain. (2016) 157:2854–64. 10.1097/j.pain.0000000000000705
    1. Pendi A, Field R, Farhan SD, Eichler M, Bederman SS. Perioperative ketamine for analgesia in spine surgery: a meta-analysis of randomized controlled trials. Spine (Phila PA 1976). (2018) 43:E299–E307. 10.1097/BRS.0000000000002318
    1. Bi Y, Ye Y, Zhu Y, Ma J, Zhang X, Liu B. The effect of ketamine on acute and chronic wound pain in patients undergoing breast surgery: a meta-analysis and systematic review. Pain Pract. (2021) 21:316–32. 10.1111/papr.12961
    1. Kroin JS, Das V, Moric M, Buvanendran A. Efficacy of the ketamine metabolite (2r,6r)-hydroxynorketamine in mice models of pain. Reg Anesth Pain Med. (2019) 44:111–7. 10.1136/rapm-2018-000013
    1. Swartjes M, Morariu A, Niesters M, Aarts L, Dahan A. Nonselective and Nr2b-selective N-methyl-D-aspartic acid receptor antagonists produce antinociception and long-term relief of Allodynia in acute and neuropathic pain. Anesthesiology. (2011) 115:165–74. 10.1097/ALN.0b013e31821bdb9b
    1. Velzen MV, Dahan JDC, van Dorp ELA, Mogil JS, Hooijmans CR, Dahan A. Efficacy of ketamine in relieving neuropathic pain: a systematic review and meta-analysis of animal studies. Pain. (2021) 162:2320–30. 10.1097/j.pain.0000000000002231
    1. Eichenberger U, Neff F, Sveticic G, Bjorgo S, Petersen-Felix S, Arendt-Nielsen L, et al. . Chronic phantom limb pain: the effects of calcitonin, ketamine, and their combination on pain and sensory thresholds. Anesth Analg. (2008) 106:1265–73, table of contents. 10.1213/ane.0b013e3181685014
    1. Schwartzman RJ, Alexander GM, Grothusen JR, Paylor T, Reichenberger E, Perreault M. Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: a double-blind placebo controlled study. Pain. (2009) 147:107–15. 10.1016/j.pain.2009.08.015
    1. Mitchell AC, Fallon MT. A single infusion of intravenous ketamine improves pain relief in patients with critical limb ischaemia: results of a double blind randomised controlled trial. Pain. (2002) 97:275–81. 10.1016/S0304-3959(02)00033-7
    1. Eide PK, Stubhaug A, Oye I, Breivik H. continuous subcutaneous administration of the N-Methyl-D-aspartic acid (Nmda) receptor antagonist ketamine in the treatment of post-herpetic neuralgia. Pain. (1995) 61:221–8. 10.1016/0304-3959(94)00182-E
    1. Eide PK, Jorum E, Stubhaug A, Bremnes J, Breivik H. Relief of post-herpetic neuralgia with the N-Methyl-D-Aspartic acid receptor antagonist ketamine: a double-blind, cross-over comparison with morphine and placebo. Pain. (1994) 58:347–54. 10.1016/0304-3959(94)90129-5
    1. Nikolajsen L, Hansen CL, Nielsen J, Keller J, Arendt-Nielsen L, Jensen TS. The effect of ketamine on phantom pain: a central neuropathic disorder maintained by peripheral input. Pain. (1996) 67:69–77. 10.1016/0304-3959(96)03080-1
    1. Dahan A, Olofsen E, Sigtermans M, Noppers I, Niesters M, Aarts L, et al. . Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain. Eur J Pain. (2011) 15:258–67. 10.1016/j.ejpain.2010.06.016
    1. Goldberg DS, McGee SJ. Pain as a global public health priority. BMC Public Health. (2011) 11:770. 10.1186/1471-2458-11-770
    1. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. . Chronic pain as a symptom or a disease: the Iasp classification of chronic pain for the international classification of diseases (Icd-11). Pain. (2019) 160:19–27. 10.1097/j.pain.0000000000001384
    1. Macrae WA. Chronic post-surgical pain: 10 years on. Br J Anaesth. (2008) 101:77–86. 10.1093/bja/aen099
    1. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. . Size and distribution of the global volume of surgery in 2012. Bull World Health Organ. (2016) 94:201–9F. 10.2471/BLT.15.159293
    1. Baker DW. History of the joint commission's pain standards: lessons for today's prescription opioid epidemic. JAMA. (2017) 317:1117–8. 10.1001/jama.2017.0935
    1. WHO . International Classification of Diseases for Mortality and Morbidity Statistics. 11th ed. Geneva: World Health Orgnization (2019).
    1. Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci. (2016) 18:20–30. 10.1038/nrn.2016.162
    1. Peirs C, Seal RP. Neural circuits for pain: recent advances and current views. Science. (2016) 354:578–84. 10.1126/science.aaf8933
    1. Pozek JP, Beausang D, Baratta JL, Viscusi ER. The acute to chronic pain transition: can chronic pain be prevented? Med Clin North Am. (2016) 100:17–30. 10.1016/j.mcna.2015.08.005
    1. Katz J, Jackson M, Kavanagh BP, Sandler AN. Acute pain after thoracic surgery predicts long-term post-thoracotomy pain. Clin J Pain. (1996) 12:50–5. 10.1097/00002508-199603000-00009
    1. McCartney CJ, Sinha A, Katz J. A qualitative systematic review of the role of N-Methyl-D-aspartate receptor antagonists in preventive analgesia. Anesth Analg. (2004) 98:1385–400, table of contents. 10.1213/01.ANE.0000108501.57073.38
    1. Hirota K, Lambert DG. Ketamine: new uses for an old drug? Br J Anaesth. (2011) 107:123–6. 10.1093/bja/aer221
    1. Lim J, Chen D, McNicol E, Sharma L, Varaday G, Sharma A, et al. . Risk factors for persistent pain after breast and thoracic surgeries: a systematic literature review and meta-analysis. Pain. (2022) 163:3–20. 10.1097/j.pain.0000000000002301
    1. Jin J, Chen Q, Min S, Du X, Zhang D, Qin P. Prevalence and predictors of chronic postsurgical pain after colorectal surgery: a prospective study. Colorectal Dis. (2021) 23:1878–89. 10.1111/codi.15640
    1. Gungor S, Fields K, Aiyer R, Valle AGD, Su EP. Incidence and risk factors for development of persistent postsurgical pain following total knee arthroplasty: a retrospective cohort study. Medicine (Baltimore). (2019) 98:e16450. 10.1097/MD.0000000000016450
    1. Giusti EM, Lacerenza M, Gabrielli S, Manzoni GM, Manna C, D'Amario F, et al. . Psychological factors and trajectories of post-surgical pain: a longitudinal prospective study. Pain Pract. (2021) 22:159–70. 10.1111/papr.13074
    1. Benlolo S, Hanlon JG, Shirreff L, Lefebvre G, Husslein H, Shore EM. Predictors of persistent postsurgical pain after hysterectomy-a prospective cohort study. J Minim Invasive Gynecol. (2021) 28:2036–46 e1. 10.1016/j.jmig.2021.05.017
    1. Dindo L, Zimmerman MB, Hadlandsmyth K, StMarie B, Embree J, Marchman J, et al. . Acceptance and commitment therapy for prevention of chronic postsurgical pain and opioid use in at-risk veterans: a pilot randomized controlled study. J Pain. (2018) 19:1211–21. 10.1016/j.jpain.2018.04.016
    1. Nicholls JL, Azam MA, Burns LC, Englesakis M, Sutherland AM, Weinrib AZ, et al. . Psychological treatments for the management of postsurgical pain: a systematic review of randomized controlled trials. Patient Relat Outcome Meas. (2018) 9:49–64. 10.2147/PROM.S121251
    1. Zhang K, Xu T, Yuan Z, Wei Z, Yamaki VN, Huang M, et al. . Essential roles of ampa receptor glua1 phosphorylation and presynaptic hcn channels in fast-acting antidepressant responses of ketamine. Sci Signal. (2016) 9:ra123. 10.1126/scisignal.aai7884
    1. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. . Nmdar inhibition-independent antidepressant actions of ketamine metabolites. Nature. (2016) 533:481–6. 10.1038/nature17998
    1. Yang C, Yang J, Luo A, Hashimoto K. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl Psychiatry. (2019) 9:280. 10.1038/s41398-019-0624-1
    1. Wei Y, Chang L, Hashimoto K. Molecular mechanisms underlying the antidepressant actions of arketamine: beyond the NMDA receptor. Mol Psychiatry. (2021) 27:559–73. 10.1038/s41380-021-01121-1
    1. Cuttle MF, Rusznak Z, Wong AY, Owens S, Forsythe ID. Modulation of a presynaptic hyperpolarization-activated cationic current (Ih) at an excitatory synaptic terminal in the rat auditory brainstem. J Physiol. (2001) 534(Pt 3):733–44. 10.1111/j.1469-7793.2001.00733.x
    1. Luján R, Albasanz JL, Shigemoto R, Juiz JM. Preferential localization of the hyperpolarization-activated cyclic nucleotide-gated cation channel subunit hcn1 in basket cell terminals of the rat cerebellum. Eur J Neurosci. (2005) 21:2073–82. 10.1111/j.1460-9568.2005.04043.x
    1. Boyes J, Bolam JP, Shigemoto R, Stanford IM. Functional presynaptic Hcn channels in the rat globus pallidus. Eur J Neurosci. (2007) 25:2081–92. 10.1111/j.1460-9568.2007.05463.x
    1. Huang H, Trussell LO. Presynaptic Hcn channels regulate vesicular glutamate transport. Neuron. (2014) 84:340–6. 10.1016/j.neuron.2014.08.046
    1. Huang Z, Li G, Aguado C, Lujan R, Shah MM. Hcn1 channels reduce the rate of exocytosis from a subset of cortical synaptic terminals. Scientific Rep. (2017) 7:40257. 10.1038/srep40257
    1. Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC, et al. . Presynaptic Hcn1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat Neurosci. (2011) 14:478–86. 10.1038/nn.2757
    1. Huang Z, Lujan R, Martinez-Hernandez J, Lewis AS, Chetkovich DM, Shah MM. Trip8b-Independent trafficking and plasticity of adult cortical presynaptic Hcn1 channels. J Neurosci. (2012) 32:14835–48. 10.1523/JNEUROSCI.1544-12.2012
    1. Mashour GA, Ben Abdallah A, Pryor KO, El-Gabalawy R, Vlisides PE, Jacobsohn E, et al. . Intraoperative ketamine for prevention of depressive symptoms after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial. Br J Anaesth. (2018) 121:1075–83. 10.1016/j.bja.2018.03.030
    1. Avidan MS, Maybrier HR, Abdallah AB, Jacobsohn E, Vlisides PE, Pryor KO, et al. . Intraoperative ketamine for prevention of postoperative delirium or pain after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial. Lancet. (2017) 390:267–75. 10.1016/S0140-6736(17)31467-8
    1. Kroenke K, Bair MJ, Damush TM, Wu J, Hoke S, Sutherland J, et al. . Optimized antidepressant therapy and pain self-management in primary care patients with depression and musculoskeletal pain: a randomized controlled trial. JAMA. (2009) 301:2099–110. 10.1001/jama.2009.723
    1. Park LT, Luckenbaugh DA, Pennybaker SJ, Hopkins MA, Henter ID, Lener MS, et al. . The effects of ketamine on typical and atypical depressive symptoms. Acta Psychiatrica Scandinavica. (2020) 142:394–401. 10.1111/acps.13216
    1. Vlisides PE, Bel-Bahar T, Nelson A, Chilton K, Smith E, Janke E, et al. . Subanaesthetic ketamine and altered states of consciousness in humans. Br J Anaesth. (2018) 121:249–59. 10.1016/j.bja.2018.03.011
    1. Van Essen DC. A population-average, landmark- and surface-based (Pals) atlas of human cerebral cortex. Neuroimage. (2005) 28:635–62. 10.1016/j.neuroimage.2005.06.058
    1. Geng JJ, Vossel S. Re-Evaluating the role of Tpj in attentional control: contextual updating? Neurosci Biobehav Rev. (2013) 37(10 Pt 2):2608–20. 10.1016/j.neubiorev.2013.08.010
    1. Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, et al. . Subspecialization in the human posterior medial cortex. Neuroimage. (2015) 106:55–71. 10.1016/j.neuroimage.2014.11.009
    1. Braga RM, Buckner RL. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron. (2017) 95:457–71 e5. 10.1016/j.neuron.2017.06.038
    1. Krönke KM, Wolff M, Shi Y, Kraplin A, Smolka MN, Bühringer G, et al. . Functional connectivity in a triple-network saliency model is associated with real-life self-control. Neuropsychologia. (2020) 149:107667. 10.1016/j.neuropsychologia.2020.107667
    1. Krall SC, Rottschy C, Oberwelland E, Bzdok D, Fox PT, Eickhoff SB, et al. . The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Struct Funct. (2015) 220:587–604. 10.1007/s00429-014-0803-z
    1. Igelström KM, Graziano MSA. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia. (2017) 105:70–83. 10.1016/j.neuropsychologia.2017.01.001
    1. Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity-Based subdivisions of the human right temporoparietal junction area: evidence for different areas participating in different cortical networks. Cereb Cortex. (2012) 22:1894–903. 10.1093/cercor/bhr268
    1. Krall SC, Volz LJ, Oberwelland E, Grefkes C, Fink GR, Konrad K. The right temporoparietal junction in attention and social interaction: a transcranial magnetic stimulation study. Human Brain Mapp. (2016) 37:796–807. 10.1002/hbm.23068
    1. Blanke O. Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci. (2012) 13:556–71. 10.1038/nrn3292
    1. Blanke O, Ortigue S, Landis T, Seeck M. Stimulating illusory own-body perceptions. Nature. (2002) 419:269–70. 10.1038/419269a
    1. Blanke O, Arzy S. The out-of-Body experience: disturbed self-processing at the temporo-parietal junction. Neuroscientist. (2005) 11:16–24. 10.1177/1073858404270885
    1. Wen X, Liu Y, Zhao P, Liu Z, Li H, Li W, et al. . Disrupted communication of the temporoparietal junction in patients with major depressive disorder. Cogn Affect Behav Neurosci. (2021) 21:1276–96. 10.3758/s13415-021-00918-5
    1. McGowan JC, LaGamma CT, Lim SC, Tsitsiklis M, Neria Y, Brachman RA, et al. . Prophylactic ketamine attenuates learned fear. Neuropsychopharmacology. (2017) 42:1577–89. 10.1038/npp.2017.19
    1. Mathai DS, Meyer MJ, Storch EA, Kosten TR. The relationship between subjective effects induced by a single dose of ketamine and treatment response in patients with major depressive disorder: a systematic review. J Affective Disorder. (2020) 264:123–9. 10.1016/j.jad.2019.12.023
    1. Sos P, Klirova M, Novak T, Kohutova B, Horacek J, Palenicek T. Relationship of ketamine's antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinol Lett. (2013) 34:287–93.
    1. Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, et al. . Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am J Psychiatry. (2019) 176:401–9. 10.1176/appi.ajp.2018.18070834
    1. Luckenbaugh DA, Niciu MJ, Ionescu DF, Nolan NM, Richards EM, Brutsche NE, et al. . Do the dissociative side effects of ketamine mediate its antidepressant effects? J Affective Disorder. (2014) 159:56–61. 10.1016/j.jad.2014.02.017
    1. Olofsen E, Kamp J, Henthorn TK, van Velzen M, Niesters M, Sarton E, et al. . Ketamine psychedelic and antinociceptive effects are connected. Anesthesiology. (2022) 136:792–801. 10.1097/ALN.0000000000004176
    1. Vesuna S, Kauvar IV, Richman E, Gore F, Oskotsky T, Sava-Segal C, et al. . Deep posteromedial cortical rhythm in dissociation. Nature. (2020) 586:87–94. 10.1038/s41586-020-2731-9
    1. Vogt BA, Paxinos G. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct. (2014) 219:185–92. 10.1007/s00429-012-0493-3
    1. Zilles K, Eickhoff S, Palomero-Gallagher N. The human parietal cortex: a novel approach to its architectonic mapping. Adv Neurol. (2003) 93:1–21.
    1. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. (2006) 129(Pt 3):564–83. 10.1093/brain/awl004
    1. Cauda F, Geminiani G, D'Agata F, Sacco K, Duca S, Bagshaw AP, et al. . Functional connectivity of the posteromedial cortex. PLoS ONE. (2010) 5:e13107. 10.1371/journal.pone.0013107
    1. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-Mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. (2009) 33:279–96. 10.1016/j.neubiorev.2008.09.002
    1. Parvizi J, Braga RM, Kucyi A, Veit MJ, Pinheiro-Chagas P, Perry C, et al. . Altered sense of self during seizures in the posteromedial cortex. Proc Natl Acad Sci USA. (2021) 118:e2100522118. 10.1073/pnas.2100522118
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Arlington, VA: (2013). 10.1176/appi.books.9780890425596
    1. Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A, et al. . Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-Methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry. (2000) 57:270–6. 10.1001/archpsyc.57.3.270
    1. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. (2020) 168:107966. 10.1016/j.neuropharm.2020.107966
    1. Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of H-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci. (2002) 5:767–74. 10.1038/nn891
    1. Suarez LE, Markello RD, Betzel RF, Misic B. Linking structure and function in macroscale brain networks. Trends Cogn Sci. (2020) 24:302–15. 10.1016/j.tics.2020.01.008
    1. Zhang J, Kucyi A, Raya J, Nielsen AN, Nomi JS, Damoiseaux JS, et al. . What have we really learned from functional connectivity in clinical populations? Neuroimage. (2021) 242:118466. 10.1016/j.neuroimage.2021.118466
    1. Haber SN, Liu H, Seidlitz J, Bullmore E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology. (2022) 47:20–40. 10.1038/s41386-021-01156-6
    1. Menon V, D'Esposito M. The role of Pfc networks in cognitive control and executive function. Neuropsychopharmacology. (2022) 47:90–103. 10.1038/s41386-021-01152-w
    1. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. . Functional network organization of the human brain. Neuron. (2011) 72:665–78. 10.1016/j.neuron.2011.09.006
    1. Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. Evidence for hubs in human functional brain networks. Neuron. (2013) 79:798–813. 10.1016/j.neuron.2013.07.035
    1. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. . The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. (2011) 106:1125–65. 10.1152/jn.00338.2011
    1. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. (2011) 106:2322–45. 10.1152/jn.00339.2011
    1. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar Mri. Magnet Resonance Med. (1995) 34:537–41. 10.1002/mrm.1910340409
    1. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. . Mapping functionally related regions of brain with functional connectivity Mr imaging. AJNR American J Neuroradiol. (2000) 21:1636–44.
    1. Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. (1998) 7:119–32. 10.1006/nimg.1997.0315
    1. Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. . Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA. (2007) 104:11073–8. 10.1073/pnas.0704320104
    1. Gordon EM, Lynch CJ, Gratton C, Laumann TO, Gilmore AW, Greene DJ, et al. . Three distinct sets of connector hubs integrate human brain function. Cell Rep. (2018) 24:1687–95 e4. 10.1016/j.celrep.2018.07.050
    1. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. (2009) 19:72–8. 10.1093/cercor/bhn059
    1. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. (2008) 1124:1–38. 10.1196/annals.1440.011
    1. Del Fabro L, Schmidt A, Fortea L, Delvecchio G, D'Agostino A, Radua J, et al. . Functional brain network dysfunctions in subjects at high-risk for psychosis: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev. (2021) 128:90–101. 10.1016/j.neubiorev.2021.06.020
    1. Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. . A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull. (2017) 33:73–84. 10.1007/s12264-016-0090-1
    1. Kircher T, Brohl H, Meier F, Engelen J. Formal thought disorders: from phenomenology to neurobiology. Lancet Psychiatry. (2018) 5:515–26. 10.1016/S2215-0366(18)30059-2
    1. Song M, Zhang Y, Cui Y, Yang Y, Jiang T. Brain network studies in chronic disorders of consciousness: advances and perspectives. Neurosci Bull. (2018) 34:592–604. 10.1007/s12264-018-0243-5
    1. Malaia E, Bates E, Seitzman B, Coppess K. Altered brain network dynamics in youths with autism spectrum disorder. Exp Brain Res. (2016) 234:3425–31. 10.1007/s00221-016-4737-y
    1. Scheidegger M, Walter M, Lehmann M, Metzger C, Grimm S, Boeker H, et al. . Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS ONE. (2012) 7:e44799. 10.1371/journal.pone.0044799
    1. Bonhomme V, Vanhaudenhuyse A, Demertzi A, Bruno MA, Jaquet O, Bahri MA, et al. . Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology. (2016) 125:873–88. 10.1097/ALN.0000000000001275
    1. Mueller F, Musso F, London M, de Boer P, Zacharias N, Winterer G. Pharmacological Fmri: effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network. Neuroimage Clin. (2018) 19:745–57. 10.1016/j.nicl.2018.05.037
    1. Norbury A, Rutter SB, Collins AB, Costi S, Jha MK, Horn SR, et al. . Neuroimaging correlates and predictors of response to repeated-dose intravenous ketamine in Ptsd: preliminary evidence. Neuropsychopharmacology. (2021) 46:2266–77. 10.1038/s41386-021-01104-4
    1. Robinson OJ, Pike AC, Cornwell B, Grillon C. The translational neural circuitry of anxiety. J Neurol Neurosurg Psychiatry. (2019) 90:1353–60. 10.1136/jnnp-2019-321400
    1. Murrough JW, Collins KA, Fields J, DeWilde KE, Phillips ML, Mathew SJ, et al. . Regulation of neural responses to emotion perception by ketamine in individuals with treatment-resistant major depressive disorder. Transl Psychiatry. (2015) 5:e509. 10.1038/tp.2015.10
    1. Reed JL, Nugent AC, Furey ML, Szczepanik JE, Evans JW, Zarate CA, Jr. Effects of ketamine on brain activity during emotional processing: differential findings in depressed versus healthy control participants. Biol Psychiatry Cogn Neurosci Neuroimaging. (2019) 4:610–8. 10.1016/j.bpsc.2019.01.005
    1. Loureiro JRA, Leaver A, Vasavada M, Sahib AK, Kubicki A, Joshi S, et al. . Modulation of amygdala reactivity following rapidly acting interventions for major depression. Human Brain Mapp. (2020) 41:1699–710. 10.1002/hbm.24895
    1. Vasavada MM, Loureiro J, Kubicki A, Sahib A, Wade B, Hellemann G, et al. . Effects of serial ketamine infusions on corticolimbic functional connectivity in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging. (2021) 6:735–44. 10.1016/j.bpsc.2020.06.015
    1. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. (2015) 72:603–11. 10.1001/jamapsychiatry.2015.0071
    1. Gärtner M, Aust S, Bajbouj M, Fan Y, Wingenfeld K, Otte C, et al. . Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. Eur Neuropsychopharmacol. (2019) 29:501–8. 10.1016/j.euroneuro.2019.02.008
    1. Wilkinson ST, Holtzheimer PE, Gao S, Kirwin DS, Price RB. Leveraging neuroplasticity to enhance adaptive learning: the potential for synergistic somatic-behavioral treatment combinations to improve clinical outcomes in depression. Biol Psychiatry. (2019) 85:454–65. 10.1016/j.biopsych.2018.09.004
    1. Hillman EM. Coupling mechanism and significance of the bold signal: a status report. Annu Rev Neurosci. (2014) 37:161–81. 10.1146/annurev-neuro-071013-014111
    1. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists: part i: background and basic signatures. Anesthesiology. (2015) 123:937–60. 10.1097/ALN.0000000000000841
    1. Buzsáki G. Rhythms of the Brain. New York: Oxford University Press. (2006).
    1. Cebolla AM, Cheron G. Understanding neural oscillations in the human brain: from movement to consciousness and vice versa. FrontPsychol. (2019) 10:1930. 10.3389/fpsyg.2019.01930
    1. Buzsáki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci. (2012) 14:345–67. 10.31887/DCNS.2012.14.4/gbuzsaki
    1. Brookes MJ, Tewarie PK, Hunt BAE, Robson SE, Gascoyne LE, Liddle EB, et al. . A multi-layer network approach to meg connectivity analysis. Neuroimage. (2016) 132:425–38. 10.1016/j.neuroimage.2016.02.045
    1. Nugent AC, Ballard ED, Gilbert JR, Tewarie PK, Brookes MJ, Zarate CA, Jr. The effect of ketamine on electrophysiological connectivity in major depressive disorder. Front Psychiatry. (2020) 11:519. 10.3389/fpsyt.2020.00519
    1. Bosma RL, Cheng JC, Rogachov A, Kim JA, Hemington KS, Osborne NR, et al. . Brain dynamics and temporal summation of pain predicts neuropathic pain relief from ketamine infusion. Anesthesiology. (2018) 129:1015–24. 10.1097/ALN.0000000000002417
    1. Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, et al. . Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. (2014) 34:3969–75. 10.1523/JNEUROSCI.5055-13.2014
    1. Cheng JC, Erpelding N, Kucyi A, DeSouza DD, Davis KD. Individual differences in temporal summation of pain reflect pronociceptive and antinociceptive brain structure and function. J Neurosci. (2015) 35:9689–700. 10.1523/JNEUROSCI.5039-14.2015
    1. Kucyi A, Salomons TV, Davis KD. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proc Natl Acad Sci USA. (2013) 110:18692–7. 10.1073/pnas.1312902110
    1. Motoyama Y, Oshiro Y, Takao Y, Sato H, Obata N, Izuta S, et al. . Resting-state brain functional connectivity in patients with chronic pain who responded to subanesthetic-dose ketamine. Sci Rep. (2019) 9:12912. 10.1038/s41598-019-49360-1
    1. Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. (2015) 38:86–95. 10.1016/j.tins.2014.11.006
    1. Rogachov A, Bhatia A, Cheng JC, Bosma RL, Kim JA, Osborne NR, et al. . Plasticity in the dynamic pain connectome associated with ketamine-induced neuropathic pain relief. Pain. (2019) 160:1670–9. 10.1097/j.pain.0000000000001545
    1. McNicol ED, Schumann R, Haroutounian S. A systematic review and meta-analysis of ketamine for the prevention of persistent post-surgical pain. Acta Anaesthesiol Scand. (2014) 58:1199–213. 10.1111/aas.12377
    1. Klatt E, Zumbrunn T, Bandschapp O, Girard T, Ruppen W. Intra- and postoperative intravenous ketamine does not prevent chronic pain: a systematic review and meta-analysis. Scand J Pain. (2015) 7:42–54. 10.1016/j.sjpain.2014.12.005

Source: PubMed

3
Subskrybuj