Prescriber and patient-oriented behavioural interventions to improve use of malaria rapid diagnostic tests in Tanzania: facility-based cluster randomised trial

Bonnie Cundill, Hilda Mbakilwa, Clare Ir Chandler, George Mtove, Frank Mtei, Annie Willetts, Emily Foster, Florida Muro, Rahim Mwinyishehe, Renata Mandike, Raimos Olomi, Christopher Jm Whitty, Hugh Reyburn, Bonnie Cundill, Hilda Mbakilwa, Clare Ir Chandler, George Mtove, Frank Mtei, Annie Willetts, Emily Foster, Florida Muro, Rahim Mwinyishehe, Renata Mandike, Raimos Olomi, Christopher Jm Whitty, Hugh Reyburn

Abstract

Background: The increasing investment in malaria rapid diagnostic tests (RDTs) to differentiate malarial and non-malarial fevers, and an awareness of the need to improve case management of non-malarial fever, indicates an urgent need for high quality evidence on how best to improve prescribers' practices.

Methods: A three-arm stratified cluster-randomised trial was conducted in 36 primary healthcare facilities from September 2010 to March 2012 within two rural districts in northeast Tanzania where malaria transmission has been declining. Interventions were guided by formative mixed-methods research and were introduced in phases. Prescribing staff from all facilities received standard Ministry of Health RDT training. Prescribers from facilities in the health worker (HW) and health worker-patient (HWP) arms further participated in small interactive peer-group training sessions with the HWP additionally receiving clinic posters and patient leaflets. Performance feedback and motivational mobile-phone text messaging (SMS) were added to the HW and HWP arms in later phases. The primary outcome was the proportion of patients with a non-severe, non-malarial illness incorrectly prescribed a (recommended) antimalarial. Secondary outcomes investigated RDT uptake, adherence to results, and antibiotic prescribing.

Results: Standard RDT training reduced pre-trial levels of antimalarial prescribing, which was sustained throughout the trial. Both interventions significantly lowered incorrect prescribing of recommended antimalarials from 8% (749/8,942) in the standard training arm to 2% (250/10,118) in the HW arm (adjusted RD (aRD) 4%; 95% confidence interval (CI) 1% to 6%; P = 0.008) and 2% (184/10,163) in the HWP arm (aRD 4%; 95% CI 1% to 6%; P = 0.005). Small group training and SMS were incrementally effective. There was also a significant reduction in the prescribing of antimalarials to RDT-negatives but no effect on RDT-positives receiving an ACT. Antibiotic prescribing was significantly lower in the HWP arm but had increased in all arms compared with pre-trial levels.

Conclusions: Small group training with SMS was associated with an incremental and sustained improvement in prescriber adherence to RDT results and reducing over-prescribing of antimalarials to close to zero. These interventions may become increasingly important to cope with the wider range of diagnostic and treatment options for patients with acute febrile illness in Africa.

Trial registration: ClinicalTrials.gov NCT01292707.

Figures

Figure 1
Figure 1
Flow of facilities through assessment of eligibility, selection and randomization. † Strata 1 and 3 had fewer malaria cases in Kilimanjaro and Tanga, respectively, while strata 2 and 4 had more malaria cases when dividing the districts into two equal categories based on the proportion of malaria consultations. Equal numbers of facilities were randomized to each arm within strata. ‡ Control represents the standard RDT training arm. HW represents the health worker intervention arm. HWP represents the health worker and patient-oriented intervention arm.
Figure 2
Figure 2
Flow of facilities, health workers (prescribers) and patients through different stages of the intervention and evaluation. The outcome data collection periods include eligible patients presenting at the facilities between the intervention implementation activities. For example, evaluation period 1 commences after the standard RDT training and initial RDT supply until the start of the intervention training. See Table 1 for further details on timing of intervention implementation and evaluation. The total data collection is based on all eligible patients presenting at the facilities following the standard RDT training until the final exit survey. It, therefore, includes patients presenting during the intervention implementation activities which were excluded in the outcome data collection periods. RDT, rapid diagnostic test.
Figure 3
Figure 3
Flow chart defining the primary outcome and showing prescribing practices. † Fever status not known for 40 patients in the control arm, 14 in the HW arm and 6 in the HWP arm. Of these patients, five (13%) in the control, four (29%) in the HW arm and three (50%) in the HWP arm also had alternate diagnosis missing. Data on whether or not they had an RDT and the result is known for all patients with missing fever status but are not included in the analysis. ‡ Obvious alternate diagnosis (soft tissue, ear or urine infection) not known for four patients in each arm among those with a history of fever, and one in the control arm and five in the HW arm for those with no history of fever. Data on whether or not they had an RDT (and the result) is known for all these patients but are not included in the analysis. ⋄ Whether or not an RDT was taken is unknown for one patient in the control arm. # RDT result is unknown for 77 (1%) in the control arm, 94 (1%) in the HW arm and 92 (2%) in the HWP arm. ∫ Recommended antimalarial (rAM) defined as quinine for children under 2 months, Artemether Lumefantrine (ALu) or quinine for women of childbearing age, and ALu for all others. Abx represents antibiotics; HW, health worker; HWP, health worker plus patient-oriented; RDT, rapid diagnostic test.

References

    1. Amexo M, Tolhurst R, Barnish G, Bates I. Malaria misdiagnosis: effects on the poor and vulnerable. Lancet. 2004;364:1896–8. doi: 10.1016/S0140-6736(04)17446-1.
    1. Leslie T, Mikhail A, Mayan I, Anwar M, Bakhtash S, Nader M, et al. Overdiagnosis and mistreatment of malaria among febrile patients at primary healthcare level in Afghanistan: observational study. BMJ. 2012;345:e4389. doi: 10.1136/bmj.e4389.
    1. Reyburn H, Mbatia R, Drakeley C, Carneiro I, Mwakasungula E, Mwerinde O, et al. Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. BMJ. 2004;329:1212. doi: 10.1136/bmj.38251.658229.55.
    1. Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, et al. Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol. 2010;8:272–80. doi: 10.1038/nrmicro2385.
    1. D’Acremont V, Lengeler C, Genton B. Reduction in the proportion of fevers associated with Plasmodium falciparum parasitaemia in Africa: a systematic review. Malar J. 2010;9:240. doi: 10.1186/1475-2875-9-240.
    1. D’Acremont V, Lengeler C, Mshinda H, Mtasiwa D, Tanner M, Genton B. Time to move from presumptive malaria treatment to laboratory-confirmed diagnosis and treatment in African children with fever. PLoS Med. 2009;6:e252. doi: 10.1371/journal.pmed.0050252.
    1. WHO. Guidelines for the treatment of malaria. WHO/HTM/MAL/2006.1108; 2006: p. 10.
    1. WHO. Guidelines for the treatment of malaria. 2nd ed. 2010.
    1. WHO. World Malaria Report. 2013. ISBN 978 92 4 156469 4.
    1. Barat L, Chipipa J, Kolczak M, Sukwa T. Does the availability of blood slide microscopy for malaria at health centers improve the management of persons with fever in Zambia? Am J Trop Med Hyg. 1999;60:1024–30.
    1. Reyburn H, Mbakilwa H, Mwangi R, Mwerinde O, Olomi R, Drakeley C, et al. Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial. BMJ. 2007;334:403. doi: 10.1136/.
    1. Bisoffi Z, Sirima BS, Angheben A, Lodesani C, Gobbi F, Tinto H, et al. Rapid malaria diagnostic tests vs. clinical management of malaria in rural Burkina Faso: safety and effect on clinical decisions. A randomized trial. Trop Med Int Health. 2009;14:491–8. doi: 10.1111/j.1365-3156.2009.02246.x.
    1. D’Acremont V, Kahama-Maro J, Swai N, Mtasiwa D, Genton B, Lengeler C. Reduction of anti-malarial consumption after rapid diagnostic tests implementation in Dar es Salaam: a before-after and cluster randomized controlled study. Malar J. 2011;10:107. doi: 10.1186/1475-2875-10-107.
    1. Hamer DH, Ndhlovu M, Zurovac D, Fox M, Yeboah-Antwi K, Chanda P, et al. Improved diagnostic testing and malaria treatment practices in Zambia. JAMA. 2007;297:2227–31. doi: 10.1001/jama.297.20.2227.
    1. Ansah EK, Narh-Bana S, Epokor M, Akanpigbiam S, Quartey AA, Gyapong J, et al. Rapid testing for malaria in settings where microscopy is available and peripheral clinics where only presumptive treatment is available: a randomised controlled trial in Ghana. BMJ. 2010;340:c930. doi: 10.1136/bmj.c930.
    1. Leslie T, Mikhail A, Mayan I, Cundill B, Anwar M, Bakhtash SH, et al. Rapid diagnostic tests to improve treatment of malaria and other febrile illnesses: patient randomised effectiveness trial in primary care clinics in Afghanistan. BMJ. 2014;348:g3730. doi: 10.1136/bmj.g3730.
    1. Lubell Y, Reyburn H, Mbakilwa H, Mwangi R, Chonya S, Whitty CJ, et al. The impact of response to the results of diagnostic tests for malaria: cost-benefit analysis. BMJ. 2008;336:202–5. doi: 10.1136/bmj.39395.696065.47.
    1. Chandler CI, Mangham L, Njei AN, Achonduh O, Mbacham WF, Wiseman V. ‘As a clinician, you are not managing lab results, you are managing the patient’: how the enactment of malaria at health facilities in Cameroon compares with new WHO guidelines for the use of malaria tests. Soc Sci Med. 2012;74:1528–35. doi: 10.1016/j.socscimed.2012.01.025.
    1. Chandler CI, Meta J, Ponzo C, Nasuwa F, Kessy J, Mbakilwa H, et al. The development of effective behaviour change interventions to support the use of malaria rapid diagnostic tests by Tanzanian clinicians. Implement Sci. 2014;9:83. doi: 10.1186/1748-5908-9-83.
    1. Mtove G, Amos B, Nadjm B, Hendriksen IC, Dondorp AM, Mwambuli A, et al. Decreasing incidence of severe malaria and community-acquired bacteraemia among hospitalized children in Muheza, north-eastern Tanzania, 2006–2010. Malar J. 2011;10:320. doi: 10.1186/1475-2875-10-320.
    1. Mwanziva C, Shekalaghe S, Ndaro A, Mengerink B, Megiroo S, Mosha F, et al. Overuse of artemisinin-combination therapy in Mto wa Mbu (river of mosquitoes), an area misinterpreted as high endemic for malaria. Malar J. 2008;7:232. doi: 10.1186/1475-2875-7-232.
    1. Hayes RJ, Moulton LH. Cluster randomised trials. Taylor & Francis Group: Chapman and Hall/CRC; 2009.
    1. Moulton LH. Covariate-based constrained randomization of group-randomized trials. Clin Trials. 2004;1:297–305. doi: 10.1191/1740774504cn024oa.
    1. Nietert PJ, Jenkins RG, Nemeth LS, Ornstein SM. An application of a modified constrained randomization process to a practice-based cluster randomized trial to improve colorectal cancer screening. Contemp Clin Trials. 2009;30:129–32. doi: 10.1016/j.cct.2008.10.002.
    1. Sismanidis C, Moulton LH, Ayles H, Fielding K, Schaap A, Beyers N, et al. Restricted randomization of ZAMSTAR: a 2 x 2 factorial cluster randomized trial. Clin Trials. 2008;5:316–27. doi: 10.1177/1740774508094747.
    1. NMCP . Training guide and facilitators manual for malaria rapid diagnostic tests, Malaria control series 26. Tanzania: Ministry of Health and Social Welfare; 2010.
    1. Zurovac D, Sudoi RK, Akhwale WS, Ndiritu M, Hamer DH, Rowe AK, et al. The effect of mobile phone text-message reminders on Kenyan health workers’ adherence to malaria treatment guidelines: a cluster randomised trial. Lancet. 2011;378:795–803. doi: 10.1016/S0140-6736(11)60783-6.
    1. Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized trials. Int J Epidemiol. 1999;28:319–26. doi: 10.1093/ije/28.2.319.
    1. Hopkins H, Bebell L, Kambale W, Dokomajilar C, Rosenthal PJ, Dorsey G. Rapid diagnostic tests for malaria at sites of varying transmission intensity in Uganda. J Infect Dis. 2008;197:510–8. doi: 10.1086/526502.
    1. Laurent A, Schellenberg J, Shirima K, Ketende SC, Alonso PL, Mshinda H, et al. Performance of HRP-2 based rapid diagnostic test for malaria and its variation with age in an area of intense malaria transmission in southern Tanzania. Malar J. 2010;9:294. doi: 10.1186/1475-2875-9-294.
    1. Chandler CI, Chonya S, Boniface G, Juma K, Reyburn H, Whitty CJ. The importance of context in malaria diagnosis and treatment decisions - a quantitative analysis of observed clinical encounters in Tanzania. Trop Med Int Health. 2008;13:1131–42. doi: 10.1111/j.1365-3156.2008.02118.x.
    1. Chandler CI, Jones C, Boniface G, Juma K, Reyburn H, Whitty CJ. Guidelines and mindlines: why do clinical staff over-diagnose malaria in Tanzania? A qualitative study. Malar J. 2008;7:53. doi: 10.1186/1475-2875-7-53.
    1. Chandler CI, Mwangi R, Mbakilwa H, Olomi R, Whitty CJ, Reyburn H. Malaria overdiagnosis: is patient pressure the problem? Health Policy Plan. 2008;23:170–8. doi: 10.1093/heapol/czm046.
    1. NMCP . National guidelines for diagnosis and treatment of malaria. Malaria control series 25. Dar es Salaam. Tanzania: Ministry of Health and Social Welfare; 2011.
    1. Woodward C. Evidence and Information for Policy. Geneva: Department of Organization of Health Services Delivery, World Health Organisation; 2000. Improving provider skills: strategies for assisting health workers to modify and improve skills: developing quality health care - a process of change.
    1. Wenger E. Communities of practice. Learning, meaning, and identity. New York: Cambridge University Press; 1998.
    1. Michie S, Fixsen D, Grimshaw JM, Eccles MP. Specifying and reporting complex behaviour change interventions: the need for a scientific method. Implement Sci. 2009;4:40. doi: 10.1186/1748-5908-4-40.
    1. Chandler CI, Whitty CJ, Ansah EK. How can malaria rapid diagnostic tests achieve their potential? A qualitative study of a trial at health facilities in Ghana. Malar J. 2010;9:95. doi: 10.1186/1475-2875-9-95.
    1. Yeboah-Antwi K, Pilingana P, Macleod WB, Semrau K, Siazeele K, Kalesha P, et al. Community case management of fever due to malaria and pneumonia in children under five in Zambia: a cluster randomized controlled trial. PLoS Med. 2010;7:e1000340. doi: 10.1371/journal.pmed.1000340.
    1. Hazir T, Nisar YB, Abbasi S, Ashraf YP, Khurshid J, Tariq P, et al. Comparison of oral amoxicillin with placebo for the treatment of world health organization-defined nonsevere pneumonia in children aged 2–59 months: a multicenter, double-blind, randomized, placebo-controlled trial in pakistan. Clin Infect Dis. 2011;52:293–300. doi: 10.1093/cid/ciq142.
    1. McCambridge J, Kypri K, Elbourne D. In randomization we trust? There are overlooked problems in experimenting with people in behavioral intervention trials. J Clin Epidemiol. 2014;67:247–53. doi: 10.1016/j.jclinepi.2013.09.004.
    1. Rutstein S, Johnson K. The DHS wealth index. DHS comparative reports no.6. Calverton, Maryland: ORC Macro, 2004: Chapter 2: Construction of the DHS wealth index: page 8-14.
    1. Vyas S, Kumaranayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21:459–68.33. doi: 10.1093/heapol/czl029.

Source: PubMed

3
Subskrybuj