The Effects of Intranasal Oxytocin on Neural and Behavioral Responses to Social Touch in the Form of Massage

Yuanshu Chen, Qin Li, Qianqian Zhang, Juan Kou, Yingying Zhang, Han Cui, Jennifer Wernicke, Christian Montag, Benjamin Becker, Keith M Kendrick, Shuxia Yao, Yuanshu Chen, Qin Li, Qianqian Zhang, Juan Kou, Yingying Zhang, Han Cui, Jennifer Wernicke, Christian Montag, Benjamin Becker, Keith M Kendrick, Shuxia Yao

Abstract

Manually-administered massage can potently increase endogenous oxytocin concentrations and neural activity in social cognition and reward regions and intranasal oxytocin can increase the pleasantness of social touch. In the present study, we investigated whether intranasal oxytocin modulates behavioral and neural responses to foot massage applied manually or by machine using a randomized placebo-controlled within-subject pharmaco-fMRI design. 46 male participants underwent blocks of massage of each type where they both received and imagined receiving the massage. Intranasal oxytocin significantly increased subjective pleasantness ratings of the manual but not the machine massage and neural responses in key regions involved in reward (orbitofrontal cortex, dorsal striatum and ventral tegmental area), social cognition (superior temporal sulcus and inferior parietal lobule), emotion and salience (amygdala and anterior cingulate and insula) and default mode networks (medial prefrontal cortex, parahippocampal gyrus, posterior cingulate, and precuneus) as well as a number of sensory and motor processing regions. Both neural and behavioral effects of oxytocin occurred independent of whether subjects thought the massage was applied by a male or female masseur. These findings support the importance of oxytocin for enhancing positive behavioral and neural responses to social touch in the form of manually administered massage and that a combination of intranasal oxytocin and massage may have therapeutic potential in autism.

Clinical trials registration: The Effects of Oxytocin on Social Touch; registration ID: NCT03278860; URL: https://ichgcp.net/clinical-trials-registry/NCT03278860.

Keywords: autism traits; fMRI; oxytocin; reward response; social massage.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Chen, Li, Zhang, Kou, Zhang, Cui, Wernicke, Montag, Becker, Kendrick and Yao.

Figures

FIGURE 1
FIGURE 1
Sequence of the massage task.
FIGURE 2
FIGURE 2
Positive and Negative Affect Schedule scores. Individual (A) positive and (B) negative mood scores before (T1), 35 min after (T2) intranasal treatment and also immediately after the manual massage (T3) as well as after the machine massage (T4) with oxytocin (OT) or placebo (PLC) in the MRI scanner. The order of the massage runs was counterbalanced. *p < 0.05, **p < 0.01.
FIGURE 3
FIGURE 3
Behavioral ratings of (A) manually administered massage and (B) machine administered massage under oxytocin (OT) and placebo (PLC). Histograms show mean ± SEM rating scores for pleasantness, arousal, intensity and payment willingness for each massage condition. Error bars show standard errors. **p < 0.01.
FIGURE 4
FIGURE 4
Increased brain activity induced by OT in response to combined real and imagined manually administered massage. Statistical maps are displayed with a threshold of P < 0.025, FDR corrected.

References

    1. Ackerley R., Saar K., McGlone F., Backlund Wasling H. (2014). Quantifying the sensory and emotional perception of touch: differences between glabrous and hairy skin. Front. Behav. Neurosci. 8:34. 10.1523/JNEUROSCI.2847-13.2014
    1. Agren G., Lundeberg T., Uvnäs-Moberg K., Sato A. (1995). The oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin reverses the increase in the withdrawal response latency to thermal, but not mechanical nociceptive stimuli following oxytocin administration or massage-like stroking in rats. Neurosci. Lett. 187 49–52. 10.1016/0304-3940(95)11335-T
    1. Baron-Cohen S., Wheelwright S. (2004). The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. J. Autism Dev. Disord. 34 163–175. 10.1023/b:jadd.0000022607.19833.00
    1. Baron-Cohen S., Wheelwright S., Skinner R., Martin J., Clubley E. (2001). The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 31 5–17. 10.1023/a:1005653411471
    1. Bartz J. A., Zaki J., Bolger N., Ochsner K. N. (2011). Social effects of oxytocin in humans: context and person matter. Trends Cogn. Sci. 15 301–309. 10.1016/j.tics.2011.05.002
    1. Beck A. T., Steer R. A., Brown G. K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychol. Corp.
    1. Björnsdotter M., Gordon I., Pelphrey K. A., Olausson H., Kaiser M. (2014). Development of brain mechanisms for processing affective touch. Front. Behav. Neurosci. 8:24. 10.3389/fnbeh.2014.00024
    1. Björnsdotter M., Morrison I., Olausson H. (2010). Feeling good: on the role of C fiber mediated touch in interoception. Exp. Brain. Res. 207 149–155. 10.1007/s00221-010-2408-y
    1. Cabanis M., Pyka M., Mehl S., Müller B. W., Loos-Jankowiak S., Winterer G., et al. (2013). The precuneus and the insula in self-attributional processes. Cogn. Affect. Behav. Neurosci. 13 330–345. 10.3758/s13415-012-0143-5
    1. Caligiore D., Mustile M., Spalletta G., Baldassarre G. (2017). Action observation and motor imagery for rehabilitation in Parkinson’s disease: a systematic review and an integrative hypothesis. Neurosci. Biobehav. Rev. 72 210–222. 10.1016/j.neubiorev.2016.11.005
    1. Cascio C. J., Foss-Feig J. H., Burnette C. P., Heacock J. L., Cosby A. A. (2012). The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioception. Autism 16 406–419. 10.1177/1362361311430404
    1. Cascio C. J., Moore D., McGlone F. (2019). Social touch and human development. Dev. Cogn. Neurosci. 35 5–11. 10.1016/j.dcn.2018.04.009
    1. Case L. K., Pineda J., Ramachandran V. S. (2015). Common coding and dynamic interactions between observed, imagined, and experienced motor and somatosensory activity. Neuropsychologia 79 233–245. 10.1016/j.neuropsychologia.2015.04.005i
    1. Cauda F., D’Agata F., Sacco K., Duca S., Geminiani G., Vercelli A. (2011). Functional connectivity of the insula in the resting brain. Neuroimage 55 8–23. 10.1016/j.neuroimage.2010.11.049
    1. Chen Y., Becker B., Zhang Y., Cui H., Du J., Wernicke J., et al. (2020). Oxytocin increases the pleasantness of affective touch and orbitofrontal cortex activity independent of valence. Eur. Neuropsychopharm 39 99–110. 10.1016/2020.08.003
    1. Chivukula S., Zhang C., Aflalo T., Jafari M., Pejsa K., Pouratian N., et al. (2020). Neural encoding of felt and imagined touch within posterior parietal cortex. bioRxiv [Preprint]. 10.1101/2020.07.27.226633
    1. Costa V. D., Lang P. J., Sabatinelli D., Versace F., Bradley M. M. (2010). Emotional imagery: assessing pleasure and arousal in the brain’s reward circuitry. Hum. Brain. Mapp. 31 1446–1457. 10.1002/hbm.20948
    1. Craig A. D. (2009). How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10 59–70. 10.1038/nrn2555
    1. Crockford C., Wittig R. M., Langergraber K., Ziegler T. E., Zuberbuhler K., Deschner T. (2013). Urinary oxytocin and social bonding in related and unrelated wild chimpanzees. Proc. Biol. Sci. 280:20122765. 10.1098/rspb.2012.2765
    1. Croy I., Luong A., Triscoli C., Hofmann E., Olausson H., Sailer U. (2016). Interpersonal stroking touch is targeted to C tactile afferent activation. Behav. Brain Res. 297 37–40. 10.1016/j.bbr.2015.09.038
    1. Da Costa A. P. C., Guevara-Guzman R. G., Ohkura S., Goode J. A., Kendrick K. M. (1996). The role of oxytocin release in the paraventricular nucleus in the control of maternal behavior in sheep. J. Neuroendocrinol. 8 163–177.
    1. Davidovic M., Jönsson E. H., Olausson H., Björnsdotter M. (2016). Posterior superior temporal sulcus responses predict perceived pleasantness of skin stroking. Front. Hum. Neurosci. 10:432. 10.3389/fnhum.2016.00432
    1. De Oliveira D. C. G., Zuardi A. W., Graeff F. G., Queiroz R. H. C., Crippa J. A. S. (2012). Anxiolytic-like effect of oxytocin in the simulated public speaking test. J. Psychopharm. 26 497–504. 10.1177/0269881111400642
    1. Dumais K. M., Kulkarni P. P., Ferris C. F., Veenema A. H. (2017). Sex differences in neural activation following different routes of oxytocin administration in awake adult rats. Psychoneuroendocrinology 81 52–62. 10.1016/j.psyneuen.2017.04.003
    1. Dunbar R. I. (2010). The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci. Biobehav. Rev. 34 260–268. 10.1016/j.neubiorev.2008.07.001
    1. Ellingsen D.-M., Leknes S., Løseth G., Wessberg J., Olausson H. (2016). The neurobiology shaping affective touch: expectation, motivation, and meaning in the multisensory context. Front Psychol. 6:1986. 10.3389/fpsyg.2015.01986
    1. Ellingsen D.-M., Wessberg J., Cheinokova O., Olausson H., Laeng B., Leknes S. (2014). In touch with your emotions: oxytocin and touch change social impressions while others’ facial expressions can alter touch. Psychoneuroendocrinology 39 11–20. 10.1016/j.psyneuen.2013.09.017
    1. Espí-López G. V., Zurriaga-Llorens R., Monzani L., Falla D. (2016). The effect of manipulation plus massage therapy versus massage therapy alone in people with tension-type headache. A randomized controlled clinical trial. Eur. J. Phys. Rehabi.l Med. 52 606–617.
    1. Essick G. K., McGlone F., Dancer C., Fabricant D., Ragin Y., Phillips N., et al. (2010). Quantitative assessment of pleasant touch. Neurosci. Biobehav. Rev. 34 192–203. 10.1016/j.neubiorev.2009.02.003
    1. Ferris C. F., Yee J. R., Kenkel W. M., Dumais K. M., Moore K., Veenema A. H., et al. (2015). Distinct BOLD activation profiles following central and peripheral oxytocin administration in awake rats. Front. Behav. Neurosci. 9:245. 10.3389/fnbeh.2015.00245
    1. Field T. (2010). Touch for socioemotional and physical well-being: a review. Dev. Rev. 30 367–383. 10.1016/j.dr.2011.01.001
    1. Field T. (2019). Pediatric massage therapy research: a narrative review. Children 6:78. 10.3390/children6060078
    1. Friston K. J., Holmes A. P., Worsley K. J., Poline J. P., Frith C. D., Frackowiak R. S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2 189–210.
    1. Gamer M., Zurowski B., Büchel C. (2010). Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc. Natl. Acad. Sci. U.S.A. 107 9400–9405. 10.1073/pnas.1000985107
    1. Gao S., Becker B., Luo L., Geng Y., Zhao W., Yin Y., et al. (2016). Oxytocin, the peptide that bonds the sexes also divides them. Proc. Natl. Acad. Sci. U.S.A. 113 7650–7654. 10.1073/pnas.1602620113
    1. González-Hernández A., Manzano-García A., Martínez-Lorenzana G., Tello-García I. A., Carranza M., Arámburo C., et al. (2017). Peripheral oxytocin receptors inhibit the nociceptive input signal to spinal dorsal horn wide-dynamic-range neurons. Pain 158 2117–2128. 10.1097/j.pain.0000000000001024
    1. Gordon I., Voos A. C., Bennett R. H., Bolling D. Z., Pelphrey K. A., Kaiser M. D. (2013). Brain mechanisms for processing affective touch. Hum. Brain. Mapp. 34 914–922. 10.1002/hbm.21480
    1. Groppe S. E., Gossen A., Rademacher L., Hahn A., Westphal L., Gründer G., et al. (2013). Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain. Biol. Psychiatry 74 172–179. 10.1016/j.biopsych.2012.12.023
    1. Gruzelier J. H. (2002). A review of the impact of hypnosis, relaxation, guided imagery and individual differences on aspects of immunity and health. Stress 5 147–163. 10.1080/10253890290027877
    1. Hammond D. C. (2010). Hypnosis in the treatment of anxiety- and stress-related disorders. Expert Rev. Neurother. 10 263–273. 10.1586/ern.09.140
    1. Heimberg R. G., Horner K., Juster H., Safren S., Brown E., Schneier F., et al. (1999). Psychometric properties of the Liebowitz social anxiety scale. Psychol. Med. 29 199–212. 10.1017/s0033291798007879
    1. Holt-Lunstad J., Birmingham W. A., Light K. C. (2008). Influence of a “warm touch support enhancement intervention among married couples on ambulatory blood pressure, oxytocin, alpha amylase, and cortisol. Psychosom. Med. 70 976–985. 10.1097/PSY.0b013e318187aef7
    1. Hu J., Qi S., Becker B., Luo L., Gao S., Gong Q., et al. (2015). Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions. Hum. Brain. Mapp. 36 2132–2146. 10.1002/hbm.22760
    1. Ide M., Wada M. (2017). Salivary oxytocin concentration associates with the subjective feeling of body ownership during the rubber hand illusion. Front. Hum. Neurosci. 11:166. 10.3389/fnhum.2017.00166
    1. Ji J. L., Heyes S. B., MacLeod C., Holmes E. A. (2016). Emotional mental imagery as simulation of reality: fear and beyond—A tribute to Peter Lang. Behav. Ther. 47 702–719. 10.1016/j.beth.2015.11.004
    1. Kaiser M. D., Yang D. Y.-J., Voos A. C., Bennett R. H., Gordon I., Pretzsch C., et al. (2016). Brain mechanisms for processing affective (and nonaffective) touch are atypical in autism. Cereb. Cortex. 26 2705–2714. 10.1093/cercor/bhv125
    1. Kanner L. (1943). Autistic disturbances of affective contact. Nervous Child. 2 217–250.
    1. Kemp A. H., Quintana D. S., Kuhnert R.-L., Griffiths K., Hickie I. B., Guastella A. J. (2012). Oxytocin increases heart rate variability in humans at rest: implications for social approach-related motivation and capacity for social engagement. PLoS One 7:e44014. 10.1371/journal.pone.0044014
    1. Kendrick K. M. (2000). Oxytocin, motherhood and bonding. Exp. Physiol. 85 111s–124s. 10.1111/j.1469-445x.2000.tb0004.x
    1. Kendrick K. M., Guastella A. J., Becker B. (2017). “Overview of human oxytocin research,” in Behavioral Pharmacology of Neuropeptides: Oxytocin, eds Hurlemann R., Grinevich V. (Berlin: Springer; ), 321–348.
    1. Keysers C., Paracampo R., Gazzola V. (2018). What neuromodulation and lesion studies tell us about the function of the mirror neuron system and embodied cognition. Curr. Opin. Psychol. 24 35–40. 10.1016/j.copsyc.2018.04.001
    1. Kim S. E., Kim J. W., Kim J. J., Jeong B. S., Choi E. A., Jeong Y. G., et al. (2007). The neural mechanism of imagining facial affective expression. Brain Res. 1145 128–137. 10.1016/j.brainres.2006.12.048
    1. Koban L., Pourtois G. (2014). Brain systems underlying the affective and social monitoring of actions: an integrative review. Neurosci. Biobehav. Rev. 46 71–84. 10.1016/j.neubiorev.2014.02.014
    1. Kreuder A. K., Scheele D., Wassermann L., Wollseifer M., Stoffel-Wagner B., Lee M. R., et al. (2017). How the brain codes intimacy: the neurobiological substrates of romantic touch. Hum. Brain. Mapp. 38 4525–4534. 10.1002/hbm.23679
    1. Kurth F., Zilles K., Fox P. T., Laird A. R., Eickhoff S. B. (2010). A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214 519–534. 10.1007/s00429-010-0255-z
    1. Lacey S., Sathian K. (2016). “Crossmodal and multisensory interactions between vision and touch,” in Scholarpedia of Touch. Scholarpedia, eds Prescott T., Ahissar E., Izhikevich E. (Paris: Atlantis Press; ), 10.2991/978-94-6239-133-8_25
    1. Lambert S. A. (1996). The effects of hypnosis/guided imagery on the postoperative course of children. J. Dev. Behav. Pediatr. 17 307–310.
    1. Lamm C., Singer T. (2010). The role of anterior insular cortex in social emotions. Brain Struct. Funct. 214 579–591. 10.1007/s00429-010-0251-3
    1. Lang P. J. (1977). Imagery in therapy: an information processing analysis of fear. Behav. Ther. 8 862–886. 10.1016/S0005-7894(77)80157-3
    1. Lang P. J. (1979). A bio-informational theory of emotional imagery. Psychophysiology 16 495–512. 10.1111/j.1469-8986.1979.tb01511.x
    1. Lee M. R., Scheidweiler K. B., Diao X. X., Akhlaghi F., Cummins A., Huestis M. A., et al. (2018). Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. Mol. Psychiatry 23 115–122. 10.1038/mp.2017.27
    1. Leng G., Ludwig M. (2016). Intranasal oxytocin: myths and delusions. Biol. Psychiatry 79 243–250. 10.1016/j.biopsych.2015.05.003
    1. Leng G., Sabatier N. (2016). Measuring oxytocin and vasopressin: bioassays, immunoassays and random numbers. J. Neuroendocrinol. 28:0.1111/jne.12413. 10.1111/jne.12413
    1. Lewis D. E., O’Reilly M. J., Khuu S. K., Pearson J. (2013). Conditioning the mind’s eye: associative learning with voluntary mental imagery. Clin. Psychol. Sci. 1 390–400. 10.1177/2167702613484716
    1. Li Q., Becker B., Wernicke J., Chen Y., Zhang Y., Li R., et al. (2019). Foot massage evokes oxytocin release and activation of orbitofrontal cortex and superior temporal sulcus. Psychoneuroendocrinology 101 193–203. 10.1016/j.psyneuen.2018.11.016
    1. Light K. C., Grewen K. M., Amico J. A. (2005). More frequent partner hugs and higher oxytocin levels are linked to lower blood pressure and heart rate in premenopausal women. Biol. Psychol. 69 5–21. 10.1016/j.biopsycho.2004.11.002
    1. Lindgren L., Westling G., Brulin C., Lehtipalo S., Andersson M., Nyberg L. (2012). Pleasant human touch is represented in pregenual anterior cingulate cortex. Neuroimage 59 3427–3432.
    1. Lund I., Yu L. C., Uvnas-Moberg K., Wang J., Yu C., Kurosawa M., et al. (2002). Repeated massage-like stimulation induces long-term effects on nociception: contribution of oxytocinergic mechanisms. Eur. J. Neurosci. 16 330–338. 10.1046/j.1460-9568.2002.02087.x
    1. Luo L., Becker B., Geng Y., Zhao Z., Gao S., Zhao W., et al. (2017). Sex-dependent neural effect of oxytocin during subliminal processing of negative emotion faces. Neuroimage 162 127–137. 10.1016/j.neuroimage.2017.08.079
    1. Ma X., Zhao W., Luo R., Zhou F., Geng Y., Xu L., et al. (2018). Sex-and context-dependent effects of oxytocin on social sharing. Neuroimage 183 62–72. 10.1016/j.neuroimage.2018.08.004
    1. Martins D. A., Mazibuko N., Zelaya F., Vasilakopoulou S., Loveridge J., Oates A., et al. (2020). Effects of route of administration on oxytocin-induced changes in regional cerebral blood flow in humans. Nat. Commun. 11:1160. 10.1038/s41467-020-14845-5
    1. Matthiesen A. S., Ransjö-Arvidson A. B., Nissen E., Uvnäs-Moberg K. (2001). Postpartum maternal oxytocin release by newborns: effects of infant hand massage and sucking. Birth 28 13–19.
    1. McCullough M. E., Churchland P. S., Mendez A. J. (2013). Problems with measuring peripheral oxytocin: can the data on oxytocin and human behavior be trusted? Neurosci. Biobehav. Rev. 37 1485–1492. 10.1016/j.neubiorev.2013.04.018
    1. McGlone F., Olausson H., Boyle J. A., Jones-Gotman M., Dancer C., Guest S., et al. (2012). Touching and feeling: differences in pleasant touch processing between glabrous and hairy skin in humans. Eur. J. Neurosci. 35 1782–1788. 10.1111/j.1460-9568.2012.08092.x
    1. McGlone F., Wessberg J., Olausson H. (2014). Discriminative and affective touch: sensing and feeling. Neuron 82 737–755. 10.1016/j.neuron.2014.05.001
    1. Mertens G., Krypotos A. M., Engelhard I. M. (2020). A review on mental imagery in fear conditioning research 100 years since the ‘Little Albert’ study. Behav. Res. Ther. 126:103556 10.1016/j.brat.2020.103556
    1. Minichino A., Cadenhead K. (2017). Mirror neurons in psychiatric disorders: from neuroception to bio-behavioral system dysregulation. Neuropsychopharmacology 42:366. 10.1038/npp.2016.220
    1. Mitsui S., Yamamoto M., Nagasawa M., Mogi K., Kikusui T., Ohtani N., et al. (2011). Urinary oxytocin as a noninvasive biomarker of positive emotion in dogs. Horm. Behav. 60 239–243. 10.1016/j.yhbeh.2011.05.012
    1. Morhenn V., Beavin L. E., Zak P. J. (2012). Massage increases oxytocin and reduces adrenocorticotropin hormone in humans. Altern. Ther. Health Med. 18 11–18.
    1. Morrison I. (2016). ALE meta-analysis reveals dissociable networks for affective and discriminative aspects of touch. Hum. Brain. Mapp. 37 1308–1320. 10.1002/hbm.23103
    1. Nasiri A., Mahmodi M. A., Nobakht Z. (2016). Effect of aromatherapy massage with lavender essential oil on pain in patients with osteoarthritis of the knee: a randomized controlled clinical trial. Complement Ther. Clin. Pract. 25 75–80. 10.1016/j.ctcp.2016.08.002
    1. Newmark T. S., Bogacki D. F. (2005). The use of relaxation, hypnosis, and imagery in sport psychiatry. Clin. Sports Med. 24 973–977. 10.1016/j.csm.2005.06.003
    1. Olausson H., Lamarre Y., Backlund H., Morin C., Wallin B., Starck G., et al. (2002). Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 5 900–904. 10.1038/nn896
    1. Olausson H., Wessberg J., McGlone F., Vallbo A. (2010). The neurophysiology of unmyelinated tactile afferents. Neurosci. Biobehav. Rev. 34 185–191. 10.1016/j.neubiorev.2008.09.011
    1. Paloyelis Y., Doyle O. M., Zelaya F. O., Maltezos S., Williams S. C., Fotopoulou A., et al. (2016). A spatiotemporal profile of in vivo cerebral blood flow changes following intranasal oxytocin in humans. Biol. Psychiatry 79 693–705. 10.1016/j.biopsych.2014.10.005
    1. Parker K. J., Garner J. P., Libove R. A., Hyde S. A., Hornbeak K. B., Carson D. S., et al. (2014). Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc. Natl. Acad. Sci. U.S.A. 111 12258–12263. 10.1073/pnas.1402236111
    1. Pawling R., Trotter P. D., McGlone F. P., Walker S. C. (2017). A positive touch: C-tactile afferent targeted skin stimulation carries an appetitive motivational value. Biol. Psychol. 129 186–194. 10.1016/j.biopsycho.2017.08.057
    1. Perini I., Olausson H. (2015). Seeking pleasant touch: neural correlates of behavioral preferences for skin stroking. Front. Behav. Neurosci. 9:8. 10.3389/fnbeh.2015.00008
    1. Perlman A., Fogerite S. G., Glass O., Bechard E., Ali A., Njike V. Y., et al. (2019). Efficacy and safety of massage for osteoarthritis of the knee: a randomized clinical trial. J. Gen. Intern. Med. 34 379–386. 10.1007/s11606-018-4763-5
    1. Quintana D. S., Rokicki J., van der Meer D., Alnaes D., Kaufmann T., Cóordova-Polomera A., et al. (2018). Oxytocin pathway gene networks in the human brain. Nat. Commun. 10:668. 10.1038/s41467-019-08503-8
    1. Quintana D. S., Westlye L. T., Alnæs D., Rustan ØG., Kaufmann T., Smerud K., et al. (2016). Low dose intranasal oxytocin delivered with Breath Powered device dampens amygdala response to emotional stimuli: a peripheral effect-controlled within-subjects randomized dose-response fMRI trial. Psychoneuroendocrinology 69 180–188. 10.1016/j.psyneuen.2016.04.010
    1. Quintana D. S., Lischke A., Grace S., Scheele D., Ma Y., Becker B. (2020). Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Mol. Psychiatry 1–12. 10.1038/s41380-020-00864-7
    1. Riem M. M., Bakermans-Kranenburg M. J., Pieper S., Tops M., Boksem M. A., Vermeiren R. R., et al. (2011). Oxytocin modulates amygdala, insula, and inferior frontal gyrus responses to infant crying: a randomized controlled trial. Biol. Psychiatry 70 291–297. 10.1016/j.biopsych.2011.02.006
    1. Rizzolatti G., Fabbri-Destro M. (2008). The mirror system and its role in social cognition. Curr. Opin. Neurobiol. 18 179–184. 10.1016/j.conb.2008.08.001
    1. Rolls E. T. (2010). The affective and cognitive processing of touch, oral texture, and temperature in the brain. Neurosci. Biobehav. Rev. 34 237–245. 10.1016/j.neubiorev.2008.03.010
    1. Rolls E. T., O’Doherty J., Kringelbach M. L., Francis S., Bowtell R., McGlone F. (2003). Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex. 13 308–317. 10.1093/cercor/13.3.308
    1. Sailer U., Triscoli C., Häggblad G., Hamilton P., Olausson H., Croy I. (2016). Temporal dynamics of brain activation during 40 minutes of pleasant touch. NeuroImage 139 360–367. 10.1016/j.neuroimage.2016.06.031
    1. Scheele D., Kendrick K. M., Khouri C., Kretzer E., Schläpfer T. E., Stoffel-Wagner B., et al. (2014a). An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits. Neuropsychopharmacology 39 2078–2085. 10.1038/npp.2014.78
    1. Scheele D., Striepens N., Kendrick K. M., Schwering C., Noelle J., Wille A., et al. (2014b). Opposing effects of oxytocin on moral judgment in males and females. Hum. Brain. Mapp. 35 6067–6076. 10.1002/hbm.22605
    1. Scheele D., Wille A., Kendrick K. M., Stoffel-Wagner B., Becker B., Güntürkün O., et al. (2013). Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proc. Natl. Acad. Sci. U.S.A. 110 20308–20313. 10.1073/pnas.1314190110
    1. Schneiderman I., Zagoory-Sharon O., Leckman J. F., Feldman R. (2012). Oxytocin during the initial stages of romantic attachment: relations to couples’ interactive reciprocity. Psychoneuroendocrinology 37 1277–1285. 10.1016/j.psyneuen.2011.12.021
    1. Schoen S. A., Miller L. J., Green K. E. (2008). Pilot study of the sensory over-responsivity scales: assessment and inventory. Am. J. Occup. Ther. 62 393–406. 10.5014/ajot.62.4.393
    1. Sindermann C., Luo R., Becker B., Kendrick K. M., Montag C. (2020). The role of oxytocin on self-serving lying. Brain Behav. 10:e01518. 10.1002/brb3.1518
    1. Sliz D., Smith A., Wiebking C., Northoff G., Hayley S. (2012). Neural correlates of a single-session massage treatment. Brain Imaging Behav. 6 77–87. 10.1007/s11682-011-9146-z
    1. Spengler F. B., Schultz J., Scheele D., Essel M., Maier W., Heinrichs M., et al. (2017). Kinetics and dose dependency of intranasal oxytocin effects on amygdala reactivity. Biol. Psychiatry 82 885–894. 10.1016/j.biopsych.2017.04.015
    1. Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., Jacobs G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
    1. Stock S., Uvnäs-Moberg K. (1988). Increased plasma levels of oxytocin in response to afferent electrical stimulation of the sciatic and vagal nerves and in response to touch and pinch in anaesthetized rats. Acta Physiol. Scand. 132 29–34. 10.1111/j.1748-1716.1988.tb08294.x
    1. Striepens N., Kendrick K. M., Hanking V., Landgraf R., Wüllner U., Maier W., et al. (2013). Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci. Rep. 3:3440. 10.1038/srep03440
    1. Striepens N., Scheele D., Kendrick K. M., Becker B., Schäfer L., Schwalba K., et al. (2012). Oxytocin facilitates protective responses to aversive social stimuli in males. Proc. Natl. Acad. Sci. U.S.A. 109 18144–18149. 10.1073/pnas.1208852109
    1. Szeto A., McCabe P. M., Nation D. A., Tabak B. A., Rossetti M. A., McCullough M. E., et al. (2011). Evaluation of enzyme immunoassay and radioimmunoassay methods for the measurement of plasma oxytocin. Psychosom. Med. 73 393–400. 10.1097/PSY.0b013e31821df0c2
    1. Takahashi T., Babygirija R. R., Ludwig K. (2015). Anti-stress effect of hypothalamic oxytocin-Importance of somatosensory stimulation and social buffering. Int. J. Neurol. Res. 1 96–101. 10.17554/j.issn.2313-5611.2015.01.18
    1. Tanaka A., Furubayashi T., Arai M., Inoue D., Kimura S., Kiriyama A., et al. (2018). Delivery of oxytocin to the brain for the treatment of autism spectrum disorder by nasal application. Mol. Pharm. 15 1105–1111. 10.1021/acs.molpharmaceut.7b00991
    1. Taurines R., Schwenck C., Lyttwin B., Schecklmann M., Jans T., Reefschläger L., et al. (2014). Oxytocin plasma concentrations in children and adolescents with autism spectrum disorder: correlation with autistic symptomatology. Atten. Defic. Hyperact. Disord. 6 231–239. 10.1007/s12402-014-0145-y
    1. Torem M. S. (1992). Therapeutic imagery enhanced by hypnosis. Psychiatr. Med. 10 1–12.
    1. Torrubia R., Avila C., Moltó J., Caseras X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Pers. Indiv. Differ. 31 837–862. 10.1016/S0191-8869(00)00183-5
    1. Tsuji S., Yuhi T., Furuhara K., Ohta S., Shimizu Y., Higashida H. (2015). Salivary oxytocin concentrations in seven boys with autism spectrum disorder received massage from their mothers: a pilot study. Front. Psychiatry 6:58. 10.3389/fpsyt.2015.00058
    1. Uddin L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16 55–61. 10.1038/nrn3857
    1. Uddin L. Q., Nomi J. S., Hébert-Seropian B., Ghaziri J., Boucher O. (2017). Structure and function of the human insula. J. Clin. Neurophysiol. 34 300–306. 10.1097/WNP.0000000000000377
    1. Uvnäs-Moberg K., Handlin L., Kendall-Tackett K., Petersson M. (2019). Oxytocin is a principal hormone that exerts part of its effects by active fragments. Med. Hypotheses 133:109394. 10.1016/j.mehy.2019.109394
    1. Uvnäs-Moberg K., Handlin L., Petersson M. (2015). Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol. 5:1529. 10.3389/fpsyg.2014.01529
    1. Uvnäs-Moberg K., Handlin L., Petersson M. (2020). Neuroendocrine mechanisms involved in the physiological effects caused by skin-to-skin contact–With a particular focus on the oxytocinergic system. Infant. Behav. Dev. 61:101482 10.1016/j.infbeh.2020.101482
    1. Uvnäs-Moberg K., Petersson M. (2010). “Role of oxytocin and oxytocin related effects in manual therapies,” in The Science and Clinical Application of Manual Therapy, eds King H. H., Jänig W., Patterson M. M. (Amsterdam: Elsevier; ), 147–162.
    1. Vagnoli L., Bettini A., Amore E., De Masi S., Messeri A. (2019). Relaxation-guided imagery reduces perioperative anxiety and pain in children: a randomized study. Eur. J. Pediatr. 178 913–921. 10.1007/s00431-019-03376-x
    1. Velandia M. (2012). Parent-Infant Skin-to-Skin Contact Studies: Parent-Infant Interaction and Oxytocin Levels During Skin-to-Skin Contact After Cesarean Section and Motherinfant Skin-to-Skin Contact as Treatment for Breastfeeding Problems. PhD Thesis, Karolinska Institutet, Sweden.
    1. Vittner D., McGrath J., Robinson J., Lawhon G., Cusson R., Eisenfeld L., et al. (2018). Increase in oxytocin from skin-to-skin contact enhances development of parent–infant relationship. Biol. Res. Nurs. 20 54–62. 10.1177/1099800417735633
    1. Voos A. C., Pelphrey K. A., Kaiser M. D. (2013). Autistic traits are associated with diminished neural response to affective touch. Soc. Cogn. Affect. Neurosci. 8 378–386. 10.1093/scan/nss009
    1. Walker S. C., Trotter P. D., Swaney W. T., Marshall A., McGlone F. P. (2017). C-tactile afferents: cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides 64 27–38. 10.1016/j.npep.2017.01.001
    1. Watson D., Clark L. A., Tellegen A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54 1063–1070. 10.1037//0022-3514.54.6.1063
    1. Wilhelm F. H., Kochar A. S., Roth W. T., Gross J. J. (2001). Social anxiety and response to touch: incongruence between self-evaluative and physiological reactions. Biol. Psychol. 58 181–202. 10.1016/s0301-0511(01)00113-2
    1. Xu X., Liu C., Zhou X., Chen Y., Gao Z., Zhou F., et al. (2019). Oxytocin facilitates self-serving rather than altruistic tendencies in competitive social interactions via orbitofrontal cortex. Int. J. Neuropsychopharmacol. 22 501–512. 10.1093/ijnp/pyz028
    1. Yamamoto Y., Higashida H. (2020). RAGE regulates oxytocin transport into the brain. Commun. Biol. 3:70. 10.1038/s42003-020-0799-2
    1. Yao S., Becker B., Zhao W., Zhao Z., Kou J., Ma X., et al. (2018a). Oxytocin modulates attention switching between interoceptive signals and external social cues. Neuropsychopharmacology 43 294–301. 10.1038/npp.2017.189
    1. Yao S., Zhao W., Geng Y., Chen Y., Zhao Z., Ma X., et al. (2018b). Oxytocin facilitates approach behavior to positive social stimuli via decreasing anterior insula activity. Int. J. Neuropsychopharmacol. 21 918–925. 10.1093/ijnp/pyy068
    1. Zhang H.-F., Dai Y.-C., Wu J., Jia M.-X., Zhang J.-S., Shou X.-J., et al. (2016). Plasma oxytocin and arginine-vasopressin levels in children with autism spectrum disorder in China: associations with symptoms. Neurosci. Bull. 32 423–432. 10.1007/s12264-016-0046-5
    1. Zhao W., Geng Y., Luo L., Zhao Z., Ma X., Xu L., et al. (2017). Oxytocin increases the perceived value of both self-and other-owned items and alters medial prefrontal cortex activity in an endowment task. Front. Hum. Neurosci. 11:272. 10.3389/fnhum.2017.00272
    1. Zhao W., Yao S., Li Q., Geng Y., Ma X., Luo L., et al. (2016). Oxytocin blurs the self-other distinction during trait judgments and reduces medial prefrontal cortex responses. Hum. Brain Mapp. 37 2512–2527. 10.1002/hbm.23190

Source: PubMed

3
Subskrybuj