Unsupervised progressive elastic band exercises for frail geriatric inpatients objectively monitored by new exercise-integrated technology-a feasibility trial with an embedded qualitative study

C R Rathleff, T Bandholm, E G Spaich, M Jorgensen, J Andreasen, C R Rathleff, T Bandholm, E G Spaich, M Jorgensen, J Andreasen

Abstract

Background: Frailty is a serious condition frequently present in geriatric inpatients that potentially causes serious adverse events. Strength training is acknowledged as a means of preventing or delaying frailty and loss of function in these patients. However, limited hospital resources challenge the amount of supervised training, and unsupervised training could possibly supplement supervised training thereby increasing the total exercise dose during admission. A new valid and reliable technology, the BandCizer, objectively measures the exact training dosage performed. The purpose was to investigate feasibility and acceptability of an unsupervised progressive strength training intervention monitored by BandCizer for frail geriatric inpatients.

Methods: This feasibility trial included 15 frail inpatients at a geriatric ward. At hospitalization, the patients were prescribed two elastic band exercises to be performed unsupervised once daily. A BandCizer Datalogger enabling measurement of the number of sets, repetitions, and time-under-tension was attached to the elastic band. The patients were instructed in performing strength training: 3 sets of 10 repetitions (10-12 repetition maximum (RM)) with a separation of 2-min pauses and a time-under-tension of 8 s. The feasibility criterion for the unsupervised progressive exercises was that 33% of the recommended number of sets would be performed by at least 30% of patients. In addition, patients and staff were interviewed about their experiences with the intervention.

Results: Four (27%) out of 15 patients completed 33% of the recommended number of sets. For the total sample, the average percent of performed sets was 23% and for those who actually trained (n = 12) 26%. Patients and staff expressed a general positive attitude towards the unsupervised training as an addition to the supervised training sessions. However, barriers were also described-especially constant interruptions.

Conclusions: Based on the predefined criterion for feasibility, the unsupervised training was not feasible, although the criterion was almost met. The patients and staff mainly expressed positive attitudes towards the unsupervised training. As even a small training dosage has been shown to improve the physical performance of geriatric inpatients, the proposed intervention might be relevant if the interruptions are decreased in future large-scale trials and if the adherence is increased.

Trial registration: ClinicalTrials.gov: NCT02702557, February 29, 2016. Data Protection Agency: 2016-42, February 25, 2016. Ethics Committee: No registration needed, December 8, 2015 (e-mail correspondence).

Keywords: Adherence; BandCizer; Elastic band exercises; Feasibility; Frail elderly; Monitoring technology; Unsupervised exercises.

Conflict of interest statement

Ethics approval and consent to participate

The Ethics Committee of North Denmark Region assessed the feasibility trial and stated that no approval was required (December 8, 2015, e-mail correspondence, Ethical Committee of North Denmark Region). The journal is provided with the evidence. The Declaration of Helsinki was followed, and all patients gave written informed consent.

Consent for publication

The manuscript does not contain data from any individual person in a form that could be offensive to anyone but written informed consent for all patients and staff was collected.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Elastic band exercises divided into three levels of progression. Elastic band exercises with start (start) and end position (end) shown for the three levels (1–3, 3 = highest level) of progression for the upper extremity (UE) and for the lower extremity (LE)
Fig. 2
Fig. 2
Mounting of the BandCizer on the elastic exercise band. The BandCizer mounted on the elastic exercise band at a distance of 5 cm from the handle marked by the attached plastic clips [27]
Fig. 3
Fig. 3
Patient flow diagram
Fig. 4
Fig. 4
Two examples of individual training data. One exercise set performed close to that prescribed (a) and one very far from that prescribed (b). The blue curve indicates the force exerted during single repetitions. The time-under-tension (TUT) for each repetition is marked by the horizontal orange lines. Above the traces, a summary of the data from the BandCizer is shown. In the top panel, exercises performed close to that prescribed are shown. The 11 repetitions are close to the recommended 10 repetitions per set (repetitions). Likewise, the average time-under-tension is close to the prescribed 8 s per repetition (TUT mean (second)). In the lower panel, a performance far from that prescribed is shown. The two repetitions are far from the prescribed 10 repetitions per set (repetitions). Likewise, the average time-under-tension is far from the prescribed 8 s per repetition (TUT mean (second)). (Screendump from BandCizer Backend)

References

    1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9.
    1. Fried L, Tangen C, Walston J, Newman A, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Am Geriatr Soc. 2001;56A:146–156.
    1. Rockwood K, Stadnyk K, MacKnight C, McDowell I, Hébert R, Hogan DB. A brief clinical instrument to classify frailty in elderly people. Lancet. 1999;353:205–206. doi: 10.1016/S0140-6736(98)04402-X.
    1. Sternberg SA, Wershof Schwartz A, Karunananthan S, Bergman H, Mark Clarkfield A. The identification of frailty: a systematic literature review. J Am Geriatr Soc. 2011;59:2129–2138. doi: 10.1111/j.1532-5415.2011.03597.x.
    1. Rolland Y, Dupuy C, Abellan van Kan G, Gillette S, Vellas B. Treatment strategies for sarcopenia and frailty. Med Clin North Am. 2011;95:427–438. doi: 10.1016/j.mcna.2011.02.008.
    1. Landi F, Marzetti E, Martone AM, Bernabei R, Onder G. Exercise as a remedy for sarcopenia. Curr Opin Clin Nutr Metab Care. 2014;17:25–31.
    1. Cadore E. Strength and endurance training prescription in healthy and frail elderly. A&D. 2014;5:183–113. doi: 10.14336/AD.2014.0500183.
    1. Seynnes O, Fiatarone Singh MA, Hue O, Pras P, Legros P, Bernard PL. Physiological and functional responses to low-moderate versus high-intensity progressive resistance training in frail elders. J Gerontol A Biol Sci Med Sci. 2004;59:503–509. doi: 10.1093/gerona/59.5.M503.
    1. Weening-Dijksterhuis E, de Greef MH, Scherder EJ, Slaets JP, van der Schans CP. Frail institutionalized older persons: a comprehensive review on physical exercise, physical fitness, activities of daily living, and quality-of-life—PubMed Health. Am J Phys Med Rehabil. 2011;90:156–168. doi: 10.1097/PHM.0b013e3181f703ef.
    1. Chin A, Paw MJM, van Uffelen JGZ, Riphagen I, van Mechelen W. The functional effects of physical exercise training in frail older people. Sports Med. 2008;38:781–793. doi: 10.2165/00007256-200838090-00006.
    1. Fiatarone MA, O'Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330:1769–1775. doi: 10.1056/NEJM199406233302501.
    1. Villumsen M, Jorgensen MG, Andreasen J, Rathleff MS, Mølgaard CM. Very low levels of physical activity in older patients during hospitalization at an acute geriatric ward: a prospective cohort study. J Aging Phys Act. 2015;23:542–549. doi: 10.1123/japa.2014-0115.
    1. Baert V, Gorus E, Calleeuw K, De Backer W, Bautmans I. An administrator’s perspective on the organization of physical activity for older adults in long-term care facilities. J Am Med Dir Assoc. 2016;17:75–84. doi: 10.1016/j.jamda.2015.08.011.
    1. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- versus high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017. doi:10.1519/JSC.0000000000002200.
    1. Van Roie E, Delecluse C, Coudyzer W, Boonen S, Bautmans I. Strength training at high versus low external resistance in older adults: effects on muscle volume, muscle strength, and force-velocity characteristics. Exp Gerontol. 2013;48:1351–1361. doi: 10.1016/j.exger.2013.08.010.
    1. Bollen JC, Dean SG, Siegert RJ, Howe TE, Goodwin VA. A systematic review of measures of self-reported adherence to unsupervised home-based rehabilitation exercise programmes, and their psychometric properties. BMJ Open. 2014;4:e005044–4. British Medical Journal Publishing Group.
    1. Rathleff MS, Bandholm T, McGirr KA, Harring SI, Sørensen AS, Thorborg K. New exercise-integrated technology can monitor the dosage and quality of exercise performed against an elastic resistance band by adolescents with patellofemoral pain: an observational study. J Physiother. 2016;62:159–163. doi: 10.1016/j.jphys.2016.05.016.
    1. Bø K, Herbert RD. When and how should new therapies become routine clinical practice? Physiotherapy. 2009;95:51–57. doi: 10.1016/j.physio.2008.12.001.
    1. Gobbens RJJ, van Assen MALM, Luijkx KG, Wijnen-Sponselee MT, Schols JMGA. The Tilburg frailty indicator: psychometric properties. J Am Med Dir Assoc. 2010;11:344–355. doi: 10.1016/j.jamda.2009.11.003.
    1. Andreasen J, Sørensen EE, Gobbens RJJ, Lund H, Aadahl M. Danish version of the Tilburg frailty indicator—translation, cross-cultural adaption and validity pretest by cognitive interviewing. Arch Gerontol Geriatr. 2014;59:32–38. doi: 10.1016/j.archger.2014.02.007.
    1. Pfeiffer E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc. 1975;23:433–441. doi: 10.1111/j.1532-5415.1975.tb00927.x.
    1. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014;348:g1687–7.
    1. Toigo M, Boutellier U. New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol. 2006;97:643–663. doi: 10.1007/s00421-006-0238-1.
    1. Medicine ACOS . ACSM’s guidelines for exercise testing and prescription. 2010.
    1. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36:674–688. doi: 10.1249/01.MSS.0000121945.36635.61.
    1. Faber M, Andersen MH, Sevel C, Thorborg K, Bandholm T, Rathleff M. The majority are not performing home-exercises correctly two weeks after their initial instruction—an assessor-blinded study. PeerJ. 2015;3:e1102–e1113. doi: 10.7717/peerj.1102.
    1. McGirr K, Harring SI, Kennedy TSR, Pedersen MFS, Hirata RP, Thorborg K, et al. An elastic exercise band mounted with a Bandcizer™ can differentiate between commonly prescribed home exercises for the shoulder. Int J Sports Phys Ther. 2015;10:332–340.
    1. Maribo T, Lauritsen JM, Waehrens E, Poulsen I, Hesselbo B. Barthel Index for evaluation of function: a Danish consensus on its use. Ugeskr Laeg. 2006;168:2790–2792.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–119. doi: 10.1080/02701367.1999.10608028.
    1. de Morton NA, Davidson M, Keating JL. The de Morton Mobility Index (DEMMI): an essential health index for an ageing world. Health Qual Life Outcomes. 2008;6:63. doi: 10.1186/1477-7525-6-63.
    1. Rathleff MS, Bandholm T, McGirr KA, Harring SI, Sørensen AS, Thorborg K. New exercise-integrated technology can monitor the dosage and quality of exercise performed against an elastic resistance band by adolescents with patellofemoral pain: an observational study. J Physiother Elsevier. 2016;62:159–163. doi: 10.1016/j.jphys.2016.05.016.
    1. Rathleff MS, Thorborg K, Rode LA, McGirr KA, Sørensen AS, Bøgild A, et al. Adherence to commonly prescribed, home-based strength training exercises for the lower extremity can be objectively monitored using the bandcizer. J Strength Cond Res. 2015;29:627–636. doi: 10.1519/JSC.0000000000000675.
    1. Skovdal Rathleff M, Thorborg K, Bandholm T. Concentric and eccentric time-under-tension during strengthening exercises: validity and reliability of stretch-sensor recordings from an elastic exercise-band. Hug F, editor. PLoS One 2013;8:e68172–e68179.
    1. Abrahin O, Rodrigues RP, Nascimento VC, Da Silva-Grigoletto ME, Sousa EC, Marçal AC. Single- and multiple-set resistance training improves skeletal and respiratory muscle strength in elderly women. Clin Interv Aging. 2014;9:1775–1782.
    1. Alexandre NMC, Nordin M, Hiebert R, Campello M. Predictors of compliance with short-term treatment among patients with back pain. Rev Panam. 2002;12:86–94. doi: 10.1590/S1020-49892002000800003.
    1. Clark H, Bassett S. An application of the health action process approach to physiotherapy rehabilitation adherence. Physiother Theory Pract. 2014;30:527–533. doi: 10.3109/09593985.2014.912710.
    1. Geraedts HAE, Zijlstra W, Zhang W, Bulstra S, Stevens M. Adherence to and effectiveness of an individually tailored home-based exercise program for frail older adults, driven by mobility monitoring: design of a prospective cohort study. BMC Public Health. 2014;14:570. doi: 10.1186/1471-2458-14-570.
    1. Arain M, Campbell MJ, Cooper CL, Lancaster GA. What is a pilot or feasibility study? A review of current practice and editorial policy. BMC Med Res Methodol 2010;10:67–7.
    1. Billingham SAM, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Med Res Methodol. 2013;13:104. doi: 10.1186/1471-2288-13-104.
    1. Julious SA. Issues with number needed to treat. Stat Med. 2005;24:3233–3235. doi: 10.1002/sim.2150.
    1. Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19:349–357. doi: 10.1093/intqhc/mzm042.
    1. Malterud K. Kvalitative metoder i medisinsk forskning. 2003.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–32. American College of Physicians.
    1. Marks R. Knee osteoarthritis and exercise adherence: a review. Curr Aging Sci. 2012;5:72–83. doi: 10.2174/1874609811205010072.
    1. Schutzer KA, Graves BS. Barriers and motivations to exercise in older adults. Prev Med. 2004;39:1056–1061. doi: 10.1016/j.ypmed.2004.04.003.
    1. Horne R. Patients’ beliefs about treatment: the hidden determinant of treatment outcome? J Psychosom Res. 1999;47:491–495. doi: 10.1016/S0022-3999(99)00058-6.
    1. Midence K, Myers L. Adherence to Treatment in Medical Conditions. The Netherlands: Harward Academic Publishers; 1998.
    1. Jordan JL, Holden MA, Mason EE, Foster NE. Interventions to improve adherence to exercise for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev. 2010:20(1):CD005956.
    1. Meichenbaum D. Facilitating Treatment Adherence. New York: Plenum Publishing Corporation; 1987.
    1. Pedersen MM, Petersen J, Bean JF, Damkjaer L, Juul-Larsen HG, Andersen O, et al. Feasibility of progressive sit-to-stand training among older hospitalized patients. Peer J. 2015;3:e1500. doi: 10.7717/peerj.1500.
    1. Barber SE, Jackson C, Hewitt C, Ainsworth HR, Buckley H, Akhtar S, et al. Assessing the feasibility of evaluating and delivering a physical activity intervention for pre-school children: a pilot randomised controlled trial. Pilot Feasibility Studies. 2016;2:12. doi: 10.1186/s40814-016-0052-4.
    1. Voncken-Brewster V, Tange H, Moser A, Nagykaldi Z, de Vries H, van der Weijden T. Integrating a tailored e-health self-management application for chronic obstructive pulmonary disease patients into primary care: a pilot study. BMC Fam Pract. 2014;15:4. doi: 10.1186/1471-2296-15-4.
    1. Shaw R, Fenwick E, Baker G, McAdam C, Fitzsimons C, Mutrie N. “Pedometers cost buttons”: the feasibility of implementing a pedometer based walking programme within the community. BMC Public Health. 2011;11:200. doi: 10.1186/1471-2458-11-200.
    1. Mallery LH, MacDonald EA, Hubley-Kozey CL, Earl ME, Rockwood K, MacKnight C. The feasibility of performing resistance exercise with acutely ill hospitalized older adults. BMC Geriatr. 2003;3:3–8. doi: 10.1186/1471-2318-3-3.
    1. Pedersen MM, Bodilsen AC, Petersen J, Beyer N, Andersen O, Lawson-Smith L, et al. Twenty-four-hour mobility during acute hospitalization in older medical patients. J Gerontol A Biol Sci Med Sci. 2013;68:331–337. doi: 10.1093/gerona/gls165.
    1. Sato D, Kaneda K, Wakabayashi H, Nomura T. The water exercise improves health-related quality of life of frail elderly people at day service facility. Qual Life Res. 2007;16:1577–1585. doi: 10.1007/s11136-007-9269-2.
    1. Rosendahl E, Lindelöf N, Littbrand H, Yifter-Lindgren E, Lundin-Olsson L, Håglin L, et al. High-intensity functional exercise program and protein-enriched energy supplement for older persons dependent in activities of daily living: a randomised controlled trial. Aust J Physiother. 2006;52:105–113. doi: 10.1016/S0004-9514(06)70045-9.
    1. Binder EF, Schechtman KB, Ehsani AA, Steger-May K, Brown M, Sinacore DR, et al. Effects of exercise training on frailty in community-dwelling older adults: results of a randomized, controlled trial. J Am Geriatr Soc. 2002;50:1921–1928. doi: 10.1046/j.1532-5415.2002.50601.x.
    1. Timonen L, Rantan12en T, Ryynänen O, Taimela S, Timonen TE, Sulkava R. A randomized controlled trial of rehabilitation after hospitalization in frail older women: effects on strength, balance and mobility. Scand J Med Sci Sports. 2002;12:186–92.
    1. Sullivan DH, Wall PT, Bariola JR, Bopp MM, Frost YM. Progressive resistance muscle strength training of hospitalized frail elderly. Am J Phys Med Rehabil. 2001;80:503–509. doi: 10.1097/00002060-200107000-00007.
    1. Cadore EL, Rodriguez-Mañas L, Sinclair A, Izquierdo M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation Res. 2013;16:105–114. doi: 10.1089/rej.2012.1397.
    1. Hendry M, Williams NH, Markland D, Wilkinson C, Maddison P. Why should we exercise when our knees hurt? A qualitative study of primary care patients with osteoarthritis of the knee. Fam Pract. 2006;23:558–567. doi: 10.1093/fampra/cml022.
    1. Peel NM, Paul SK, Cameron ID, Crotty M, Kurrle SE, Gray LC. Promoting activity in geriatric rehabilitation: a randomized controlled trial of Accelerometry. Taheri S, editor. PLoS One. Public Library of Science; 2016;11:e0160906.
    1. Kvale S. InterViews: an introduction to qualitative research interviewing. London: Sage Publications Thousand Oaks; 1996.
    1. Boshuizen HC, Stemmerik L, Westhoff MH, Hopman-Rock M. The effects of physical therapists’ guidance on improvement in a strength-training program for the frail elderly. J Aging Phys Act. 2005;13:5–22. doi: 10.1123/japa.13.1.5.
    1. Helbostad JL, Sletvold O, Moe-Nilssen R. Home training with and without additional group training in physically frail old people living at home: effect on health-related quality of life and ambulation. Clin Rehabil. 2004;18:498–508. doi: 10.1191/0269215504cr761oa.
    1. Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID, et al. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the frailty interventions trial in elderly subjects (FITNESS) J Am Geriatr Soc. 2003;51:291–299. doi: 10.1046/j.1532-5415.2003.51101.x.
    1. Cadore EL, Casas-Herrero A, Zambom-Ferraresi F, Idoate F, Millor N, Gómez M, et al. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age. 2014;36:773–785. doi: 10.1007/s11357-013-9586-z.
    1. Chandler JM, Duncan PW, Kochersberger G, Studenski S. Is lower extremity strength gain associated with improvement in physical performance and disability in frail, community-dwelling elders? Arch Phys Med Rehabil. 1998;79:24–30. doi: 10.1016/S0003-9993(98)90202-7.
    1. Curran GM, Bauer M, Mittman B, Pyne JM, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med Care. 2012;50:217–226. doi: 10.1097/MLR.0b013e3182408812.

Source: PubMed

3
Subskrybuj