Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate

Amin Addetia, Katharine H D Crawford, Adam Dingens, Haiying Zhu, Pavitra Roychoudhury, Meei-Li Huang, Keith R Jerome, Jesse D Bloom, Alexander L Greninger, Amin Addetia, Katharine H D Crawford, Adam Dingens, Haiying Zhu, Pavitra Roychoudhury, Meei-Li Huang, Keith R Jerome, Jesse D Bloom, Alexander L Greninger

Abstract

The development of vaccines against SARS-CoV-2 would be greatly facilitated by the identification of immunological correlates of protection in humans. However, to date, studies on protective immunity have been performed only in animal models and correlates of protection have not been established in humans. Here, we describe an outbreak of SARS-CoV-2 on a fishing vessel associated with a high attack rate. Predeparture serological and viral reverse transcription-PCR (RT-PCR) testing along with repeat testing after return to shore was available for 120 of the 122 persons on board over a median follow-up of 32.5 days (range, 18.8 to 50.5 days). A total of 104 individuals had an RT-PCR-positive viral test with a cycle threshold (CT ) of <35 or seroconverted during the follow-up period, yielding an attack rate on board of 85.2% (104/122 individuals). Metagenomic sequencing of 39 viral genomes suggested that the outbreak originated largely from a single viral clade. Only three crew members tested seropositive prior to the boat's departure in initial serological screening and also had neutralizing and spike-reactive antibodies in follow-up assays. None of the crew members with neutralizing antibody titers showed evidence of bona fide viral infection or experienced any symptoms during the viral outbreak. Therefore, the presence of neutralizing antibodies from prior infection was significantly associated with protection against reinfection (Fisher's exact test, P = 0.002).

Keywords: COVID-19; SARS-CoV-2; attack rate; boat; correlates; fishing; neutralizing antibodies; protection; vessel.

Copyright © 2020 Addetia et al.

Figures

FIG 1
FIG 1
Predeparture serological assays. (A) Abbott Architect index values for all 120 individuals assayed. The gray line indicates the cutoff for a positive Abbott reading (≥1.40). Individuals with negative Abbott index values are further classified by whether they subsequently became infected on the ship. Individuals with positive Abbott index values are further characterized by whether their preboarding serum was neutralizing. (B) Neutralization curves for all six preboarding samples that were positive in the Abbott Architect assay. (C) Titers of RBD- or spike-binding IgG antibodies in all six Abbott assay-positive preboarding samples as measured by ELISA. The negative-control sample is pooled sera collected in 2017 to 2018 from 75 individuals (Gemini Biosciences, item 100-110, lot H86W03J).
FIG 2
FIG 2
(A) Abbott Architect SARS-CoV-2 index values over time (pre- and postdeparture) are depicted for each individual with at least two serum draws. The dashed line denotes the seropositivity cutoff of the assay (1.40). Individuals who had a positive RT-PCR with a CT of <35 or who seroconverted during the follow-up period are shown in light blue. Individuals who were not infected by the above case definition criteria are shown in green. Individuals who screened positive by the Abbott Architect SARS-CoV-2 IgG assay but lacked neutralizing antibodies and were infected are shown in brown. Individuals who had preexisting neutralizing antibodies and were not infected are shown in dark blue. (B) SARS-CoV-2 whole-genome sequencing of cases from the fishery vessel confirms an outbreak. SARS-CoV-2 genomes from 39 cases with CT values of <26 were recovered, and a phylogenetic tree was made using FastTree along with 109 other isolates reflective of global diversity. Thirty-eight cases are highlighted in red with a median pairwise difference of 1 single nucleotide variation, while one outlier case from the boat is indicated by a red dot. Clade A strains associated with early trans-Pacific transmission are shown in purple.

References

    1. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M, Nagata BM, Andersen H, Martinez DR, Noe AT, Douek N, Donaldson MM, Nji NN, Alvarado GS, Edwards DK, Flebbe DR, Lamb E, Doria-Rose NA, Lin BC, Louder MK, O’Dell S, Schmidt SD, Phung E, Chang LA, Yap C, Todd J-PM, Pessaint L, Van Ry A, Browne S, Greenhouse J, Putman-Taylor T, Strasbaugh A, Campbell T-A, Cook A, Dodson A, Steingrebe K, Shi W, Zhang Y, Abiona OM, Wang L, Pegu A, Yang ES, Leung K, Zhou T, Teng I-T, Widge A, et al. 28 July 2020. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med doi:10.1056/NEJMoa2024671.
    1. van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M, Feldmann F, Allen ER, Sharpe H, Schulz J, Holbrook M, Okumura A, Meade-White K, Pérez-Pérez L, Edwards NJ, Wright D, Bissett C, Gilbride C, Williamson BN, Rosenke R, Long D, Ishwarbhai A, Kailath R, Rose L, Morris S, Powers C, Lovaglio J, Hanley PW, Scott D, Saturday G, de Wit E, Gilbert SC, Munster VJ. 30 July 2020. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature doi:10.1038/s41586-020-2608-y.
    1. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, Gao H, Ge X, Kan B, Hu Y, Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X, Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J, Li C, Wang X, Yin W, Zhang Y, Qin C. 2020. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369:77–81. doi:10.1126/science.abc1932.
    1. Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, van Kuppeveld FJM, Haagmans BL, Grosveld F, Bosch B-J. 2020. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11:2251. doi:10.1038/s41467-020-16256-y.
    1. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, Tang X, Yu J, Lan J, Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L, Zhao J, Wang X, Zhang Z, Zhang L. 2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584:115–119. doi:10.1038/s41586-020-2380-z.
    1. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, Muecksch F, Rutkowska M, Hoffmann H-H, Michailidis E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. 2020. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. bioRxiv doi:10.1101/2020.07.21.214759.
    1. Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF-W, Sahi V, Figueroa A, Guo XV, Cerutti G, Bimela J, Gorman J, Zhou T, Chen Z, Yuen K-Y, Kwong PD, Sodroski JG, Yin MT, Sheng Z, Huang Y, Shapiro L, Ho DD. 2020. Potent neutralizing antibodies directed to multiple epitopes on SARS-CoV-2 spike. Nature 584:450–410. doi:10.1038/s41586-020-2571-7.
    1. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W-T, Limbo O, Smith C, Song G, Woehl J, Yang L, Abbott RK, Callaghan S, Garcia E, Hurtado J, Parren M, Peng L, Ramirez S, Ricketts J, Ricciardi MJ, Rawlings SA, Wu NC, Yuan M, Smith DM, Nemazee D, Teijaro JR, Voss JE, Wilson IA, Andrabi R, Briney B, Landais E, Sok D, Jardine JG, Burton DR. 2020. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369:956–963. doi:10.1126/science.abc7520.
    1. Hassan AO, Case JB, Winkler ES, Thackray LB, Kafai NM, Bailey AL, McCune BT, Fox JM, Chen RE, Alsoussi WB, Turner JS, Schmitz AJ, Lei T, Shrihari S, Keeler SP, Fremont DH, Greco S, McCray PB, Perlman S, Holtzman MJ, Ellebedy AH, Diamond MS. 2020. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182:744–753.e4. doi:10.1016/j.cell.2020.06.011.
    1. Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, Tostanoski LH, Yu J, Maliga Z, Nekorchuk M, Busman-Sahay K, Terry M, Wrijil LM, Ducat S, Martinez DR, Atyeo C, Fischinger S, Burke JS, Slein MD, Pessaint L, Van Ry A, Greenhouse J, Taylor T, Blade K, Cook A, Finneyfrock B, Brown R, Teow E, Velasco J, Zahn R, Wegmann F, Abbink P, Bondzie EA, Dagotto G, Gebre MS, He X, Jacob-Dolan C, Kordana N, Li Z, Lifton MA, Mahrokhian SH, Maxfield LF, Nityanandam R, Nkolola JP, Schmidt AG, Miller AD, Baric RS, Alter G, Sorger PK, Estes JD, Andersen H, Lewis MG, Barouch DH. 2020. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 369:812–817. doi:10.1126/science.abc4776.
    1. Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH, He X, Martinez DR, Rutten L, Bos R, van Manen D, Vellinga J, Custers J, Langedijk JP, Kwaks T, Bakkers MJG, Zuijdgeest D, Huber SKR, Atyeo C, Fischinger S, Burke JS, Feldman J, Hauser BM, Caradonna TM, Bondzie EA, Dagotto G, Gebre MS, Hoffman E, Jacob-Dolan C, Kirilova M, Li Z, Lin Z, Mahrokhian SH, Maxfield LF, Nampanya F, Nityanandam R, Nkolola JP, Patel S, Ventura JD, Verrington K, Wan H, Pessaint L, Ry AV, Blade K, Strasbaugh A, Cabus M, Brown R, Cook A, Zouantchangadou S, et al. 30 July 2020. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature doi:10.1038/s41586-020-2607-z.
    1. Eyal N, Lipsitch M, Smith PG. 2020. Human challenge studies to accelerate coronavirus vaccine licensure. J Infect Dis 221:1752–1756. doi:10.1093/infdis/jiaa152.
    1. Nguyen LC, Bakerlee CW, McKelvey TG, Rose SM, Norman AJ, Joseph N, Manheim D, McLaren MR, Jiang S, Barnes CF, Kinniment M, Foster D, Darton TC, Morrison J, 1Day Sooner Research Team. 6 July 2020. Evaluating use cases for human challenge trials in accelerating SARS-CoV-2 vaccine development. Clin Infect Dis doi:10.1093/cid/ciaa935.
    1. Dawson L, Earl J, Livezey J. 2020. Severe acute respiratory syndrome coronavirus 2 human challenge trials: too risky, too soon. J Infect Dis 222:514–516. doi:10.1093/infdis/jiaa314.
    1. Shah SK, Miller FG, Darton TC, Duenas D, Emerson C, Lynch HF, Jamrozik E, Jecker NS, Kamuya D, Kapulu M, Kimmelman J, MacKay D, Memoli MJ, Murphy SC, Palacios R, Richie TL, Roestenberg M, Saxena A, Saylor K, Selgelid MJ, Vaswani V, Rid A. 2020. Ethics of controlled human infection to address COVID-19. Science 368:832–834. doi:10.1126/science.abc1076.
    1. Moriarty LF, Plucinski MM, Marston BJ, Kurbatova EV, Knust B, Murray EL, Pesik N, Rose D, Fitter D, Kobayashi M, Toda M, Cantey PT, Scheuer T, Halsey ES, Cohen NJ, Stockman L, Wadford DA, Medley AM, Green G, Regan JJ, Tardivel K, White S, Brown C, Morales C, Yen C, Wittry B, Freeland A, Naramore S, Novak RT, Daigle D, Weinberg M, Acosta A, Herzig C, Kapella BK, Jacobson KR, Lamba K, Ishizumi A, Sarisky J, Svendsen E, Blocher T, Wu C, Charles J, Wagner R, Stewart A, Mead PS, Kurylo E, Campbell S, Murray R, Weidle P, Cetron M, Friedman CR, CDC Cruise Ship Response Team, California Department of Public Health COVID-19 Team, Solano County COVID-19 Team. 2020. Public health responses to COVID-19 outbreaks on cruise ships—worldwide, February-March 2020. MMWR Morb Mortal Wkly Rep 69:347–352. doi:10.15585/mmwr.mm6912e3.
    1. Kakimoto K, Kamiya H, Yamagishi T, Matsui T, Suzuki M, Wakita T. 2020. Initial investigation of transmission of COVID-19 among crew members during quarantine of a cruise ship—Yokohama, Japan, February 2020. MMWR Morb Mortal Wkly Rep 69:312–313. doi:10.15585/mmwr.mm6911e2.
    1. Payne DC, Smith-Jeffcoat SE, Nowak G, Chukwuma U, Geibe JR, Hawkins RJ, Johnson JA, Thornburg NJ, Schiffer J, Weiner Z, Bankamp B, Bowen MD, MacNeil A, Patel MR, Deussing E, Gillingham BL, CDC COVID-19 Surge Laboratory Group. 2020. SARS-CoV-2 infections and serologic responses from a sample of U.S. Navy service members—USS Theodore Roosevelt, April 2020. MMWR Morb Mortal Wkly Rep 69:714–721. doi:10.15585/mmwr.mm6923e4.
    1. Lieberman JA, Pepper G, Naccache SN, Huang M-L, Jerome KR, Greninger AL. 2020. Comparison of commercially available and laboratory-developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. J Clin Microbiol 58:e00821-20. doi:10.1128/JCM.00821-20.
    1. Bryan A, Pepper G, Wener MH, Fink SL, Morishima C, Chaudhary A, Jerome KR, Mathias PC, Greninger AL. 2020. Performance characteristics of the Abbott Architect SARS-CoV-2 IgG assay and seroprevalence in Boise, Idaho. J Clin Microbiol 58:e00941-20. doi:10.1128/JCM.00941-20.
    1. Nalla AK, Casto AM, Huang M-LW, Perchetti GA, Sampoleo R, Shrestha L, Wei Y, Zhu H, Jerome KR, Greninger AL. 2020. Comparative performance of SARS-CoV-2 detection assays using seven different primer/probe sets and one assay kit. J Clin Microbiol 58:e00557-20. doi:10.1128/JCM.00557-20.
    1. Addetia A, Xie H, Roychoudhury P, Shrestha L, Loprieno M, Huang M-L, Jerome KR, Greninger AL. 2020. Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical SARS-CoV-2 isolates. J Clin Virol 129:104523. doi:10.1016/j.jcv.2020.104523.
    1. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923.
    1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021.
    1. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, Du Plessis L, Pybus OG. 15 July 2020. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol doi:10.1038/s41564-020-0770-5.
    1. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010.
    1. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490.
    1. Yu G. 2020. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics 69:e96. doi:10.1002/cpbi.96.
    1. Crawford KH, Dingens AS, Eguia R, Wolf CR, Wilcox N, Logue JK, Shuey K, Casto AM, Fiala B, Wrenn S, Pettie D, King NP, Chu HY, Bloom JD. 2020. Dynamics of neutralizing antibody titers in the months after SARS-CoV-2 infection. medRxiv doi:10.1101/2020.08.06.20169367.
    1. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, Jiang K, Arunkumar GA, Jurczyszak D, Polanco J, Bermudez-Gonzalez M, Kleiner G, Aydillo T, Miorin L, Fierer DS, Lugo LA, Kojic EM, Stoever J, Liu STH, Cunningham-Rundles C, Felgner PL, Moran T, García-Sastre A, Caplivski D, Cheng AC, Kedzierska K, Vapalahti O, Hepojoki JM, Simon V, Krammer F. 2020. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med 26:1033–1036. doi:10.1038/s41591-020-0913-5.
    1. Stadlbauer D, Amanat F, Chromikova V, Jiang K, Strohmeier S, Arunkumar GA, Tan J, Bhavsar D, Capuano C, Kirkpatrick E, Meade P, Brito RN, Teo C, McMahon M, Simon V, Krammer F. 2020. SARS-CoV-2 seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup. Curr Protoc Microbiol 57:e100. doi:10.1002/cpmc.100.
    1. Dingens AS, Crawford KH, Adler A, Steele SL, Lacombe K, Eguia R, Amanat F, Walls AC, Wolf CR, Murphy M, Pettie D, Carter L, Qin X, King NP, Veesler D, Krammer F, Dickerson JA, Chu HY, Englund JA, Bloom JD. 2020. Serological identification of SARS-CoV-2 infections among children visiting a hospital during the initial Seattle outbreak. medRxiv doi:10.1101/2020.05.26.20114124.
    1. Crawford KHD, Eguia R, Dingens AS, Loes AN, Malone KD, Wolf CR, Chu HY, Tortorici MA, Veesler D, Murphy M, Pettie D, King NP, Balazs AB, Bloom JD. 2020. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays. Viruses 12:513. doi:10.3390/v12050513.
    1. Seow J, Graham C, Merrick B, Acors S, Steel KJA, Hemmings O, O’Bryne A, Kouphou N, Pickering S, Galao R, Betancor G, Wilson HD, Signell AW, Winstone H, Kerridge C, Temperton N, Snell L, Bisnauthsing K, Moore A, Green A, Martinez L, Stokes B, Honey J, Izquierdo-Barras A, Arbane G, Patel A, OConnell L, Hara GO, MacMahon E, Douthwaite S, Nebbia G, Batra R, Martinez-Nunez R, Edgeworth JD, Neil SJD, Malim MH, Doores K. 2020. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection. medRxiv doi:10.1101/2020.07.09.20148429.
    1. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, Hägglöf T, Oliveira TY, Viant C, Hurley A, Hoffmann H-H, Millard KG, Kost RG, Cipolla M, Gordon K, Bianchini F, Chen ST, Ramos V, Patel R, Dizon J, Shimeliovich I, Mendoza P, Hartweger H, Nogueira L, Pack M, Horowitz J, Schmidt F, Weisblum Y, Michailidis E, Ashbrook AW, Waltari E, Pak JE, Huey-Tubman KE, Koranda N, Hoffman PR, West AP, Rice CM, Hatziioannou T, Bjorkman PJ, Bieniasz PD, Caskey M, Nussenzweig MC. 2020. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584:437–442. doi:10.1038/s41586-020-2456-9.
    1. Hachim A, Kavian N, Cohen CA, Chin AW, Chu DK, Mok CKP, Tsang OT, Yeung YC, Perera RA, Poon LL, Peiris MJ, Valkenburg SA. 2020. Beyond the Spike: identification of viral targets of the antibody response to SARS-CoV-2 in COVID-19 patients. medRxiv doi:10.1101/2020.04.30.20085670.
    1. Burbelo PD, Riedo FX, Morishima C, Rawlings S, Smith D, Das S, Strich JR, Chertow DS, Davey RT, Cohen JI. 2020. Sensitivity in detection of antibodies to nucleocapsid and spike proteins of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019. J Infect Dis 222:206–213. doi:10.1093/infdis/jiaa273.
    1. Yongchen Z, Shen H, Wang X, Shi X, Li Y, Yan J, Chen Y, Gu B. 2020. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg Microbes Infect 9:833–836. doi:10.1080/22221751.2020.1756699.
    1. Lee Y-L, Liao C-H, Liu P-Y, Cheng C-Y, Chung M-Y, Liu C-E, Chang S-Y, Hsueh P-R. 2020. Dynamics of anti-SARS-Cov-2 IgM and IgG antibodies among COVID-19 patients. J Infect 81:e55–e58. doi:10.1016/j.jinf.2020.04.019.
    1. Li N, Wang X, Lv T. 29 April 2020. Prolonged SARS‐CoV‐2 RNA shedding: not a rare phenomenon. J Med Virol doi:10.1002/jmv.25952.
    1. Deng W, Bao L, Liu J, Xiao C, Liu J, Xue J, Lv Q, Qi F, Gao H, Yu P, Xu Y, Qu Y, Li F, Xiang Z, Yu H, Gong S, Liu M, Wang G, Wang S, Song Z, Liu Y, Zhao W, Han Y, Zhao L, Liu X, Wei Q, Qin C. 2020. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 369:818–823. doi:10.1126/science.abc5343.
    1. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Antunes RS, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D. 4 August 2020. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science doi:10.1126/science.abd3871.
    1. Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, Mills R, Teng E, Kamruzzaman M, Garcia-Beltran WF, Astudillo M, Yang D, Miller TE, Oliver E, Fischinger S, Atyeo C, Iafrate AJ, Calderwood SB, Lauer SA, Yu J, Li Z, Feldman J, Hauser BM, Caradonna TM, Branda JA, Turbett SE, LaRocque RC, Mellon G, Barouch DH, Schmidt AG, Azman AS, Alter G, Ryan ET, Harris JB, Charles RC. 2020. Dynamics and significance of the antibody response to SARS-CoV-2 infection. medRxiv doi:10.1101/2020.07.18.20155374.
    1. Salazar E, Kuchipudi SV, Christensen PA, Eagar TN, Yi X, Zhao P, Jin Z, Long SW, Olsen RJ, Chen J, Castillo B, Leveque C, Towers DM, Lavinder J, Gollihar JD, Cardona J, Ippolito GC, Nissly RH, Bird IM, Greenawalt D, Rossi RM, Gontu A, Srinivasan S, Poojary IB, Cattadori IM, Hudson PJ, Joselyn N, Prugar L, Huie K, Herbert A, Bernard DW, Dye J, Kapur V, Musser JM. 2020. Relationship between anti-spike protein antibody titers and SARS-CoV-2 in vitro virus neutralization in convalescent plasma. bioRxiv doi:10.1101/2020.06.08.138990.
    1. Byrnes JR, Zhou XX, Lui I, Elledge SK, Glasgow JE, Lim SA, Loudermilk R, Chiu CY, Wilson MR, Leung KK, Wells JA. 2020. A SARS-CoV-2 serological assay to determine the presence of blocking antibodies that compete for human ACE2 binding. medRxiv doi:10.1101/2020.05.27.20114652.
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062. doi:10.1016/S0140-6736(20)30566-3.
    1. Fang FC, Naccache SN, Greninger AL. 8 June 2020. The laboratory diagnosis of COVID-19—frequently-asked questions. Clin Infect Dis doi:10.1093/cid/ciaa742.
    1. Bryan A, Fink SL, Gattuso MA, Pepper G, Chaudhary A, Wener M, Morishima C, Jerome K, Mathias PC, Greninger AL. 2020. Anti-SARS-CoV-2 IgG antibodies are associated with reduced viral load. medRxiv doi:10.1101/2020.05.22.20110551.
    1. Tang MS, Hock KG, Logsdon NM, Hayes JE, Gronowski AM, Anderson NW, Farnsworth CW. 2020. Clinical performance of two SARS-CoV-2 serologic assays. Clin Chem 66:1055–1062. doi:10.1093/clinchem/hvaa120.
    1. Van Elslande J, Decru B, Jonckheere S, Van Wijngaerden E, Houben E, Vandecandelaere P, Indevuyst C, Depypere M, Desmet S, André E, Van Ranst M, Lagrou K, Vermeersch P. 2020. Antibody response against SARS-CoV-2 spike protein and nucleoprotein evaluated by 4 automated immunoassays and 3 ELISAs. Clin Microbiol Infect doi:10.1016/j.cmi.2020.07.038.
    1. Tang MS, Hock KG, Logsdon NM, Hayes JE, Gronowski AM, Anderson NW, Farnsworth CW. 2020. Clinical performance of the Roche SARS-CoV-2 serologic assay. Clin Chem 66:1107–1109. doi:10.1093/clinchem/hvaa132.

Source: PubMed

3
Subskrybuj