Lung diffusing capacity for nitric oxide and carbon monoxide following mild-to-severe COVID-19

Giovanni Barisione, Vito Brusasco, Giovanni Barisione, Vito Brusasco

Abstract

A decreased lung diffusing capacity for carbon monoxide (DLCO ) has been reported in a variable proportion of subjects over the first 3 months of recovery from severe coronavirus disease 2019 (COVID-19). In this study, we investigated whether measurement of lung diffusing capacity for nitric oxide (DLNO ) offers additional insights on the presence and mechanisms of gas transport abnormalities. In 94 subjects, recovering from mild-to-severe COVID-19 pneumonia, we measured DLNO and DLCO between 10 and 266 days after each patient was tested negative for severe acute respiratory syndrome coronavirus 2. In 38 subjects, a chest computed tomography (CT) was available for semiquantitative analysis at six axial levels and automatic quantitative analysis of entire lungs. DLNO was abnormal in 57% of subjects, independent of time of lung function testing and severity of COVID-19, whereas standard DLCO was reduced in only 20% and mostly within the first 3 months. These differences were not associated with changes of simultaneous DLNO /DLCO ratio, while DLCO /VA and DLNO /VA were within normal range or slightly decreased. DLCO but not DLNO positively correlated with recovery time and DLCO was within the normal range in about 90% of cases after 3 months, while DLNO was reduced in more than half of subjects. Both DLNO and DLCO inversely correlated with persisting CT ground glass opacities and mean lung attenuation, but these were more frequently associated with DLNO than DLCO decrease. These data show that an impairment of DLNO exceeding standard DLCO may be present during the recovery from COVID-19, possibly due to loss of alveolar units with alveolar membrane damage, but relatively preserved capillary volume. Alterations of gas transport may be present even in subjects who had mild COVID-19 pneumonia and no or minimal persisting CT abnormalities. TRIAL REGISTRY: ClinicalTrials.gov PRS: No.: NCT04610554 Unique Protocol ID: SARS-CoV-2_DLNO 2020.

Keywords: COVID-19; alveolar membrane diffusive conductance; carbon monoxide; ground glass opacities; lung diffusing capacity; nitric oxide.

Conflict of interest statement

G.B. and V.B have no financial/nonfinancial interests to disclose.

© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Figures

FIGURE 1
FIGURE 1
Panel a: Relationship between z‐scores of standard lung diffusing capacity for carbon monoxide (DLCO) and lung diffusing capacity for nitric oxide (DLNO). Horizontal and vertical lines correspond to the 5th (dashed) and 2.5th (dotted) percentiles of reference values, that is, −1.645 and −1.96 z‐scores, respectively. The numbers within brackets indicate the subjects falling into each quadrant (Q1‐Q4) bounded within 5th or 2.5th percentiles. Symbols indicate subjects recovering from mild (white), moderate (gray), and severe (black) COVID‐19 pneumonia. Panel b: Correlation between simultaneous measures of DLNO and DLCO. Upper and lower oblique dashed lines indicate the 95% confidence interval for DLNO/DLCO ratio in healthy controls
FIGURE 2
FIGURE 2
Relationships between standard DLCO (panel a) or DLNO (panel b) and time elapsed from negative testing for SARS‐CoV‐2 to lung function studies. Symbols indicate subjects who recovered from mild (white), moderate (gray), and severe (black) COVID‐19 pneumonia. Horizontal lines correspond to the 5th (dashed) and 2.5th (dotted) percentiles of reference values, that is, −1.645 and −1.96 z‐scores, respectively. The shaded areas include the subjects with abnormal standard DLCO or DLNO values after the first 3 months of recovery
FIGURE 3
FIGURE 3
Correlations between standard DLCO (panels a, c, and e), or DLNO (panels b, d, and f) and ground glass opacities (GGO), as percentage of total CT volume, mean lung attenuation (MLA) in Hounsfield units (HU), and its coefficient of variation (MLA CV%). Symbols indicate subjects who recovered from mild (white), moderate (gray), and severe (black) COVID‐19 pneumonia. Horizontal lines correspond to the 5th (dashed) and 2.5th (dotted) percentiles of reference values, that is, −1.645 and −1.96 z‐scores, respectively
FIGURE 4
FIGURE 4
Axial CT scan acquired at the bifurcation of main bronchi (carina) in supine position in a representative subject who had severe COVID‐19 pneumonia treated by invasive mechanical ventilation. Note the discrepancy between DLNO and standard DLCO in the presence of moderate GGO extent. Abbreviations as in Table 1
FIGURE 5
FIGURE 5
Panel a: Correlation between absolute values of DLCO measured by standard method with breath‐hold time of 11 ± 0.4 s (DLCO,11±0.4 s) or by simultaneous DLNO‐DLCO method with breath‐hold time of 5 ± 0.3 s (DLCO,5±0.3 s). Asterisks (*) indicate healthy controls while circles indicate subjects who recovered from mild (white), moderate (gray), and severe (black) COVID‐19 pneumonia. Panel b: Bland‐Altman plot of difference vs. mean DLCO measured by the two methods. Shaded area is the standard deviation of differences, and horizontal dashed lines indicate the 95% confidence interval

References

    1. Ackermann, M. , Verleden, S. E. , Kuehnel, M. , Haverich, A. , Welte, T. , Laenger, F. , Vanstapel, A. , Werlein, C. , Stark, H. , Tzankov, A. , Li, W. W. , Li, V. W. , Mentzer, S. J. , & Jonigk, D. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid‐19. New England Journal of Medicine, 383, 120–128. 10.1056/NEJMoa2015432
    1. Asadi, A. K. , Sá, R. C. , Kim, N. H. , Theilmann, R. J. , Hopkins, S. R. , Buxton, R. B. , & Prisk, G. K. (2015). Inhaled nitric oxide alters the distribution of blood flow in the healthy human lung, suggesting active hypoxic pulmonary vasoconstriction in normoxia. Journal of Applied Physiology, 118, 331–343. 10.1152/japplphysiol.01354.2013
    1. Barisione, G. , Brusasco, C. , Garlaschi, A. , Baroffio, M. , & Brusasco, V. (2016). Lung diffusing capacity for nitric oxide as a marker of fibrotic changes in idiopathic interstitial pneumonias. Journal of Applied Physiology, 120, 1029–1038. 10.1152/japplphysiol.00964.2015
    1. Barisione, G. , Garlaschi, A. , Occhipinti, M. , Baroffio, M. , Pistolesi, M. , & Brusasco, V. (2019). Value of lung diffusing capacity for nitric oxide in systemic sclerosis. Physiological Reports, 7, e14149 10.1152/japplphysiol.00964.2015
    1. Borland, C. D. R. , & Hughes, J. M. B. (2020). Lung diffusing capacities (DL) for nitric oxide (NO) and carbon monoxide (CO): The evolving story. Comprehensive Physiology, 10, 73–97.
    1. Cameli, P. , Bargagli, E. , Bergantini, L. , d’Alessandro, M. , Pieroni, M. , Fontana, G. A. , Sestini, P. , & Refini, R. M. (2020). Extended exhaled nitric oxide analysis in interstitial lung diseases: A systematic review. International Journal of Molecular Sciences, 21(17), 6187 10.3390/ijms21176187
    1. Carlsen, E. , & Comroe, J. H. Jr (1958). The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. Journal of General Physiology, 42, 83–107. 10.1085/jgp.42.1.83
    1. Cerveri, I. , Zoia, M. C. , Fanfulla, F. , Spagnolatti, L. , Berrayah, L. , Grassi, M. , & Tinelli, C. (1995). Reference values of arterial oxygen tension in the middle‐aged and elderly. American Journal of Respiratory and Critical Care Medicine, 152, 934–941. 10.1164/ajrccm.152.3.7663806
    1. Cotes, J. E. , Dabbs, J. M. , Elwood, P. C. , Hall, A. M. , McDonald, A. , & Saunders, M. J. (1972). Iron‐deficiency anaemia: Its effect on transfer factor for the lung (diffusing capacity) and ventilation and cardiac frequency during sub‐maximal exercise. Clinical Science, 42, 325–335. 10.1042/cs0420325
    1. Cotton, D. J. , Graham, B. L. , & Mink, J. T. (1990). Pulmonary diffusing capacity in adult cystic fibrosis: reduced positional changes are partially reversed by hyperoxia. Clinical and Investigative Medicine, 13, 82–91.
    1. Frija‐Masson, J. , Debray, M.‐P. , Gilbert, M. , Lescure, F.‐X. , Travert, F. , Borie, R. , Khalil, A. , Crestani, B. , d'Ortho, M.‐P. , & Bancal, C. (2020). Functional characteristics of patients with SARS‐CoV‐2 pneumonia at 30 days post‐infection. European Respiratory Journal, 56, 2001754 10.1183/13993003.01754-2020
    1. Gibson, Q. H. , & Roughton, F. J. W. (1957). The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. Journal of Physiology, 136, 507–524. 10.1113/jphysiol.1957.sp005777
    1. Glenny, R. W. , & Robertson, H. T. (2011). Spatial distribution of ventilation and perfusion: mechanisms and regulation. Comprehensive Physiology, 1, 375–395.
    1. Graham, B. L. , Brusasco, V. , Burgos, F. , Cooper, B. G. , Jensen, R. , Kendrick, A. , MacIntyre, N. R. , Thompson, B. R. , & Wanger, J. (2017). 2017 ERS/ATS standards for single‐breath carbon monoxide uptake in the lung. European Respiratory Journal, 49, 1600016 10.1183/13993003.00016-2016
    1. Graham, B. L. , Steenbruggen, I. , Miller, M. R. , Barjaktarevic, I. Z. , Cooper, B. G. , Hall, G. L. , Hallstrand, T. S. , Kaminsky, D. A. , McCarthy, K. , McCormack, M. C. , Oropez, C. E. , Rosenfeld, M. , Stanojevic, S. , Swanney, M. P. , & Thompson, B. R. (2019). Standardization of spirometry 2019 update: An Official American Thoracic Society and European Respiratory Society Technical Statement. American Journal of Respiratory and Critical Care Medicine, 200, e70–e88. 10.1164/rccm.201908-1590ST
    1. Guan, W.‐J. , Ni, Z.‐Y. , Hu, Y. U. , Liang, W.‐H. , Ou, C.‐Q. , He, J.‐X. , Liu, L. , Shan, H. , Lei, C.‐L. , Hui, D. S. C. , Du, B. , Li, L.‐J. , Zeng, G. , Yuen, K.‐Y. , Chen, R.‐C. , Tang, C.‐L. , Wang, T. , Chen, P.‐Y. , Xiang, J. , … Zhong, N.‐S. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382, 1708–1720.
    1. Guénard, H. , Varène, N. , & Vaida, P. (1987). Determination of lung capillary blood volume and membrane diffusing capacity by measurement of NO and CO transfer. Respiration Physiology, 70, 113–120.
    1. Hsia, C. C. , Chuong, C. J. , & Johnson, R. L. Jr (1997). Red cell distortion and conceptual basis of diffusing capacity estimates: Finite element analysis. Journal of Applied Physiology, 83, 1397–1404.
    1. Huang, Y. , Tan, C. , Wu, J. , Chen, M. , Wang, Z. , Luo, L. , Zhou, X. , Liu, X. , Huang, X. , Yuan, S. , Chen, C. , Gao, F. , Huang, J. , Shan, H. , & Liu, J. (2020). Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respiratory Research, 21, 163 10.1186/s12931-020-01429-6
    1. Hughes, J. M. B. , & Pride, N. B. (2012). Examination of the carbon monoxide diffusing capacity (DLCO) in relation to Its KCO and VA components. American Journal of Respiratory and Critical Care Medicine, 186, 132–139.
    1. Hughes, J. M. , & van der Lee, I. (2013). The TL, NO/TL, CO ratio in pulmonary function test interpretation. European Respiratory Journal, 41, 453–461.
    1. Kang, M. Y. , & Sapoval, B. (2016). Time‐based understanding of DLCO and DLNO. Respiratory Physiology and Neurobiology, 225, 48–59. 10.1016/j.resp.2016.01.008
    1. Lerum, T. V. , Aaløkken, T. M. , Brønstad, E. , Aarli, B. , Ikdahl, E. , Lund, K. M. A. , Durheim, M. T. , Rodriguez, J. R. , Meltzer, C. , Tonby, K. , Stavem, K. , Skjønsberg, O. H. , Ashraf, H. , & Einvik, G. (2020). Dyspnoea, lung function and CT findings three months after hospital admission for COVID‐19. European Respiratory Journal, 2003448, 10.1183/13993003.03448-2020.
    1. Mason, R. J. (2020). Pathogenesis of COVID‐19 from a cell biology perspective. European Respiratory Journal, 55, 2000607 10.1183/13993003.00607-2020
    1. Miller, M. R. , & Brusasco, V. (2016). Risk of COPD in smokers with low transfer factor. European Respiratory Journal, 47, 1885–1886. 10.1183/13993003.02218-2015
    1. Mo, X. , Jian, W. , Su, Z. , Chen, M. U. , Peng, H. , Peng, P. , Lei, C. , Chen, R. , Zhong, N. , & Li, S. (2020). Abnormal pulmonary function in COVID‐19 patients at time of hospital discharge. European Respiratory Journal, 55, 2001217 10.1183/13993003.01217-2020
    1. Mossel, E. C. , Wang, J. , Jeffers, S. , Edeen, K. E. , Wang, S. , Cosgrove, G. P. , Funk, C. J. , Manzer, R. , Miura, T. A. , Pearson, L. D. , Holmes, K. V. , & Mason, R. J. (2008). SARS‐CoV replicates in primary human alveolar type II cell cultures but not in type I‐like cells. Virology, 372, 127–135. 10.1016/j.virol.2007.09.045
    1. Munkholm, M. , Marott, J. L. , Bjerre‐Kristensen, L. , Madsen, F. , Pedersen, O. F. , Lange, P. , Nordestgaard, B. G. , Mortensen, J. (2018). Reference equations for pulmonary diffusing capacity of carbon monoxide and nitric oxide in adult Caucasians. European Respiratory Journal, 52, 1500677.
    1. Oppenheimer, B. W. , Berger, K. I. , Hadjiangelis, N. P. , Norman, R. G. , Rapoport, D. M. , & Goldring, R. M. (2006). Membrane diffusion in diseases of the pulmonary vasculature. Respiratory Medicine, 100, 1247–1253.
    1. Pande, J. N. , Gupta, S. P. , & Guleria, J. S. (1975). Clinical significance of the measurement of membrane diffusing capacity and pulmonary capillary blood volume. Respiration, 32, 317–324.
    1. Quanjer, P. H. , Stanojevic, S. , Cole, T. J. , Baur, X. , Hall, G. L. , Culver, B. H. , Enright, P. L. , Hankinson, J. L. , Ip, M. S. M. , Zheng, J. , & Stocks, J. ; ERS Global Lung Function Initiative . (2012). Multi‐ethnic reference values for spirometry for the 3–95‐yr age range: the global lung function 2012 equations. European Respiratory Journal, 40, 1324–1343.
    1. Quanjer, P. H. , Tammeling, G. J. , Cotes, J. E. , Pedersen, O. F. , Peslin, R. , & Yernault, J. C. (1993). Lung volumes and forced ventilatory flows. Report Working Party, Standardization of Lung Function Tests, European Community for Steel and Coal and European Respiratory Society. European Respiratory Journal, 6(Suppl 16):5–40.
    1. Sonnweber, T. , Sahanic, S. , Pizzini, A. , Luger, A. , Schwabl, C. , Sonnweber, B. , Kurz, K. , Koppelstätter, S. , Haschka, D. , Petzer, V. , Boehm, A. , Aichner, M. , Tymoszuk, P. , Lener, D. , Theurl, M. , Lorsbach‐Köhler, A. , Tancevski, A. , Schapfl, A. , Schaber, M. , … Tancevski, I. (2020). Cardiopulmonary recovery after COVID‐19 ‐ an observational prospective multi‐center trial. European Respiratory Journal, 2003481, 10.1183/13993003.03481-2020.
    1. Stanojevic, S. , Graham, B. L. , Cooper, B. G. , Thompson, B. R. , Carter, K. W. , Francis, R. W. , Hall, G. L. ; Global Lung Function Initiative TLCO working group; Global Lung Function Initiative (GLI) TLCO (2017). Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. European Respiratory Journal, 50, 1700010.
    1. Steiger J. H. (1980). Testing Pattern Hypotheses On Correlation Matrices: Alternative Statistics And Some Empirical Results. Multivariate Behavioral Research, 15, 335–352. 10.1207/s15327906mbr1503_7.
    1. van den Borst, B. , Peters, J. B. , Brink, M. , Schoon, Y. , Bleeker‐Rovers, C. P. , Schers, H. , van Hees, H. W. H. , van Helvoort, H. , van den Boogaard, M. , van der Hoeven, H. , Reijers, M. H. , Prokop, M. , Vercoulen, J. , & van den Heuvel, M. (2020). Comprehensive health assessment three months after recovery from acute COVID‐19. Clinical Infectious Diseases, ciaa1750, 10.1093/cid/ciaa1750.
    1. Wanger, J. , Clausen, J. L. , Coates, A. , Pedersen, O. F. , Brusasco, V. , Burgos, F. , Casaburi, R. , Crapo, R. , Enright, P. , van der Grinten, C. P. M. , Gustafsson, P. , Hankinson, J. , Jensen, R. , Johnson, D. , Macintyre, N. , McKay, R. , Miller, M. R. , Navajas, D. , Pellegrino, R. , & Viegi, G. (2005). Standardisation of the measurement of lung volumes. European Respiratory Journal, 26, 511–522.
    1. Wilhelm, E. , Battino, R. , & Wilcock, R. J. (1977). Low pressure solubility of gases in liquid water. Chemical Reviews. 77:219–262.
    1. Yushkevich, P. A. , Piven, J. , Hazlett, H. C. , Smith, R. G. , Ho, S. , Gee, J. C. , Gerig, G. (2006). User‐guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31, 1116–1128.
    1. Zavorsky, G. S. , Hsia, C. C. W. , Hughes, J. M. B. , Borland, C. D. R. , Guénard, H. , van der Lee, I. , Steenbruggen, I. , Naeije, R. , Cao, J. , & Dinh‐Xuan, A. T. (2017). Standardisation and application of the single‐breath determination of nitric oxide uptake in the lung. European Respiratory Journal, 49(2), 1600962–10.1183/13993003.00962-2016
    1. Zavorsky, G. S. , Milne, E. N. C. , Lavorini, F. , Rienzi, J. P. , Cutrufello, P. T. , Kumar, S. S. , & Pistolesi, M. (2014). Small changes in lung function in runners with marathon‐induced interstitial lung edema. Physiological Reports, 2(6), e12056.

Source: PubMed

3
Subskrybuj