Beneath the floor: re-analysis of neurodevelopmental outcomes in untreated Hurler syndrome

Elsa G Shapiro, Chester B Whitley, Julie B Eisengart, Elsa G Shapiro, Chester B Whitley, Julie B Eisengart

Abstract

Background: Hurler syndrome (MPS IH), the severe, neurodegenerative form of type one mucopolysaccharidosis, is associated with rapid neurocognitive decline during toddlerhood and multi-system dysfunction. It is now standardly treated with hematopoietic cell transplantation (HCT), which halts accumulating disease pathology and prevents early death. While norm-based data on developmental functioning in untreated children have previously demonstrated neurocognitive decline, advances in methodology for understanding the cognitive functioning of children with neurodegenerative diseases have highlighted that the previous choice of scores to report results was not ideal. Specifically, the lowest possible norm-based score is 50, which obscures the complete range of cognitive functioning at more advanced stages of neurodeterioration. To a set of cognitive data collected on a sample of untreated children, we applied a modern method of score analysis, calculating a developmental quotient based on age equivalent scores, to reveal the full range of cognitive functioning beneath this cutoff of 50, uncovering new information about the rapidity of decline and the profound impairment in these children.

Results: Among 39 observations for 32 patients with untreated Hurler syndrome, the full array of cognitive functioning below 50 includes many children in the severely to profoundly impaired range. The loss of skills per time unit was 14 points between age 1 and 2. There was a very large range of developmental quotients corresponding to the norm-based cutoff of 50.

Conclusions: This report enables clarification of functioning at levels that extend beneath the floor of 50 in previous work. At the dawn of newborn screening and amidst a proliferation of new therapies for MPS I, these data can provide crucial benchmark information for developing treatments, particularly for areas of the world where transplant may not be available.

Keywords: Age equivalent; Cognitive decline; Developmental quotient; Mucopolysaccharidosis type I; Natural history; Neurodegenerative disease; Newborn screening.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the University of Minnesota IRB and patients signed a consent form, approved by the IRB, at the time of enrollment.

Competing interests

ES is a Partner in Shapiro Neuropsychology Consulting, LLC; CBW has received consulting fees and research support from ArmaGen, Sangamo, BioMarin and Sanofi Genzyme; JBE has received honoraria, consulting fees, and/or research support from ArmaGen, Regenxbio, Sangamo, Sanofi Genzyme and Shire, and has done contract work for Shapiro Neuropsychology Consulting, LLC.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Developmental Growth Curves for Untreated Hurler Syndrome; Seen between 1983 and 1995. Developmental growth curves depict the patients’ mental ages as compared with their chronological ages at the time of testing. At younger chronological ages, most patients are measuring closer to the curve of normal development. With age, their mental functions depart from the normal developmental trajectory, revealing a plateauing in development and eventual decline, illustrated with a second order polynomial curve fit to the data
Fig. 2
Fig. 2
Comparison of slopes of decline using Standard Score versus Developmental Quotient (DQ). When plotted against chronological age, Standard Scores reveal the floor effect, with many data points clustered at a score of 50 (left), which affects calculation of slope of decline. By contrast, use of DQ scores eliminates the floor effect and shows many data points lower than 50 (right). With more comprehensive representation of DQs, the slope of decline is more accurately calculated as steeper

References

    1. Shapiro EG, Nestrasil I, Rudser K, Delaney K, Kovac V, Ahmed A, Yund B, Orchard PJ, Eisengart J, Niklason GR. Neurocognition across the spectrum of mucopolysaccharidosis type I: age, severity, and treatment. Mol Genet Metab. 2015;116:61–68. doi: 10.1016/j.ymgme.2015.06.002.
    1. Aldenhoven M, Wynn RF, Orchard PJ, O’Meara A, Veys P, Fischer A, Valayannopoulos V, Neven B, Rovelli A, Prasad VK. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study. Blood. 2015;125:2164–2172. doi: 10.1182/blood-2014-11-608075.
    1. Poe MD, Chagnon SL, Escolar ML. Early treatment is associated with improved cognition in Hurler syndrome. Ann Neurol. 2014;76:747–753. doi: 10.1002/ana.24246.
    1. Kunin-Batson A, Shapiro E, Rudser K, Lavery C, Bjoraker K, Jones S, Wynn R, Vellodi A, Tolar J, Orchard P. Long-term cognitive and functional outcomes in children with Mucopolysaccharidosis (MPS)-IH (Hurler syndrome) treated with hematopoietic cell transplantation J Inherit Metab Dis Rep. 2016;29:1–8.
    1. Clarke LA, Atherton AM, Burton BK, Day-Salvatore DL, Kaplan P, Leslie ND, Scott CR, Stockton DW, Thomas JA, Muenzer J. Mucopolysaccharidosis type I newborn screening: best practices for diagnosis and management. J Pediatr. 2017;182:363–370. doi: 10.1016/j.jpeds.2016.11.036.
    1. Grosse SD, Lam WK, Wiggins LD, Kemper AR. Cognitive outcomes and age of detection of severe mucopolysaccharidosis type 1. Genet Med. 2017;19:975–82.
    1. Kiely BT, Kohler JL, Coletti HY, Poe MD, Escolar ML. Early disease progression of hurler syndrome. Orphanet J Rare Dis. 2017;12:32. doi: 10.1186/s13023-017-0583-7.
    1. Krivit W, Peters C, Shapiro EG. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol. 1999;12:167–176. doi: 10.1097/00019052-199904000-00007.
    1. Janzen D, Delaney K, Shapiro E. Cognitive and adaptive measurement endpoints for clinical trials in mucopolysaccharidoses types I, II, and III: a review of the literature. Mol Genet Metab. 2017;121:57-69.
    1. Bayley N. Manual for the Bayley scales of infant development. New York: Psychological Corporation; 1969.
    1. Bayley N. Manual for the Bayley scales of infant development (2nd Ed.). San Antonio, TX: Psychological Corporation; 1993.
    1. Ziegler R, Shapiro E. Metabolic and neurodegenerative diseases across the life span principles and practice of lifespan developmental neuropsychology. New York: Cambridge University Press; 2007. pp. 427–448.
    1. Peters C, Balthazor M, Shapiro E, King R, Kollman C, Hegland J, Henslee-Downey J, Trigg M, Cowan M, Sanders J. Outcome of unrelated donor bone marrow transplantation in 40 children with hurler syndrome. Blood. 1996;87:4894.
    1. Peters C, Shapiro E, Anderson J, Henslee-Downey P, Klemperer M, Cowan M, Saunders E, deAlarcon P, Twist C, Nachman J. Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. Blood. 1998;91:2601.
    1. Delaney KA, Rudser KR, Yund BD, Whitley CB, Haslett PA, Shapiro EG. Methods of neurodevelopmental assessment in children with neurodegenerative disease: Sanfilippo syndrome, JIMD reports. 2014;13:129–37.
    1. Shapiro EG, Nestrasil I, Delaney KA, Rudser K, Kovac V, Nair N, Richard CW, Haslett P, Whitley CB. A prospective natural history study of mucopolysaccharidosis type IIIA. J Pediatr. 2016;170:278–287. doi: 10.1016/j.jpeds.2015.11.079.
    1. Shapiro E, Bernstein J, Adams HR, Barbier AJ, Buracchio T, Como P, Delaney KA, Eichler F, Goldsmith JC, Hogan M. Neurocognitive clinical outcome assessments for inborn errors of metabolism and other rare conditions. Mol Genet Metab. 2016;118:65–69. doi: 10.1016/j.ymgme.2016.04.006.
    1. van der Lee JH, Morton J, Adams HR, Clarke L, Ebbink BJ, Escolar ML, Giugliani R, Harmatz P, Hogan M, Jones S, Kearney S, Muenzer J, Rust S, Semrud-Clikeman M, Wijburg F, Yu Z, Janzen D, Shapiro E. Cognitive endpoints for therapy development for neuronopathic mucopolysaccharidoses: results of a consensus procedure. Mol Genet Metab. 2017;121:70–79.
    1. Martin HR, Poe MD, Reinhartsen D, Pretzel RE, Roush J, Rosenberg A, Dusing SC, Escolar ML. Methods for assessing neurodevelopment in lysosomal storage diseases and related disorders: a multidisciplinary perspective. Acta Paediatr. 2008;97:69–75. doi: 10.1111/j.1651-2227.2008.00651.x.
    1. Dornelles AD, de Camargo Pinto LL, de Paula AC, Steiner CE, Lourenço CM, Kim C, Horovitz DDG, Ribeiro EM, Valadares ER, Goulart I. Enzyme replacement therapy for Mucopolysaccharidosis type I among patients followed within the MPS Brazil network. Genet Mol Biol. 2014;37:23–29. doi: 10.1590/S1415-47572014000100006.
    1. da Silva Franco JF, El Dib R, Agarwal A, Soares D, Milhan NVM, Albano LMJ, Kim CA. Mucopolysaccharidosis type I, II and VI and response to enzyme replacement therapy: results from a single-center case series study. Intractable Rare Dis Res. 2017;6:183–190. doi: 10.5582/irdr.2017.01036.
    1. Eisengart JB, Jarnes J, Ahmed A, Nestrasil I, Ziegler R, Delaney K, Shapiro E, Whitley C. Long-term cognitive and somatic outcomes of enzyme replacement therapy in untransplanted Hurler syndrome. Mol Genet Metab Rep. 2017;13:64–68. doi: 10.1016/j.ymgmr.2017.07.012.
    1. Eisengart JB, Rudser KD, Xue Y, Orchard P, Miller W, Lund T, Van der Ploeg A, Mercer J, Jones S, Mengel KE, Gökce S, Guffon N, Giugliani R, de Souza CFM, Shapiro EG, Whitley CB. Long-term outcomes of systemic therapies for Hurler syndrome: an international multicenter comparison. 2018. 10.1038/gim.2018.29.
    1. Buhrman D, Thakkar K, Poe M, Escolar ML. Natural history of Sanfilippo syndrome type a. J Inherit Metab Dis. 2014;37:431–437. doi: 10.1007/s10545-013-9661-8.
    1. Ahmed A, Rudser K, Kunin-Batson A, Delaney K, Whitley C, Shapiro E. Mucopolysaccharidosis (MPS) physical symptom score: development, reliability, and validity, JIMD reports. 2015;26:61–8.
    1. Ahmed A, Shapiro E, Rudser K, Kunin-Batson A, King K, Whitley CB. Association of somatic burden of disease with age and neuropsychological measures in attenuated mucopolysaccharidosis types I, II and VI. Mol Genet Metab Rep. 2016;7:27–31.
    1. Escolar ML, Aldenhoven M. Leukodystrophies and lysosomal storage disorders. In: Boelens JJ, Wynn R, editors. Stem cell biology and regenerative medicine. New York: Springer; 2013. pp. 63–125.
    1. Polgreen L, Tolar J, Plog M, Himes J, Orchard P, Whitley C, Miller B, Petryk A. Growth and endocrine function in patients with hurler syndrome after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2008;41:1005–1011. doi: 10.1038/bmt.2008.20.
    1. Braunlin EA, Harmatz PR, Scarpa M, Furlanetto B, Kampmann C, Loehr JP, Ponder KP, Roberts WC, Rosenfeld HM, Giugliani R. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J Inherit Metab Dis. 2011;34:1183–1197. doi: 10.1007/s10545-011-9359-8.

Source: PubMed

3
Subskrybuj