Effect of volume expansion with hypertonic- and isotonic saline and isotonic glucose on sodium and water transport in the principal cells in the kidney

Janni M Jensen, Frank H Mose, Jesper N Bech, Soren Nielsen, Erling B Pedersen, Janni M Jensen, Frank H Mose, Jesper N Bech, Soren Nielsen, Erling B Pedersen

Abstract

Background: The renal distal nephron plays an important role in the maintenance of sodium balance, extra cellular volume and blood pressure. The degree of water transport, via aquaporin2 water channels (AQP2), and sodium transport, via epithelial sodium channels (ENaC) in renal collecting duct principal cells are reflected by the level of urinary excretion of AQP2 (u-AQP2) and the γ-fraction of ENaC (u-ENaCγ). The effects of an acute intravenous volume load with isotonic saline, hypertonic saline and glucose on u-AQP2, u-ENaCγ and underlying mechanisms have never been studied in a randomized, placebo-controlled trial in healthy humans.

Methods: We studied the effects of 0.9% saline (23 ml/kg), 3% saline (7 ml/kg) and 5% glucose (23 ml/kg) on u-AQP2 and u-ENaCγ, fractional sodium excretion (FENa), free water clearance (CH2O), and plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (ANG II) and aldosterone (Aldo) in a randomized, crossover study of 23 healthy subjects, who consumed a standardized diet, regarding calories, sodium and fluid for 4 days before each examination day.

Results: After isotonic saline infusion, u-AQP2 increased (27%). CH2O and u-ENaCγ were unchanged, whereas FENa increased (123%). After hypertonic saline infusion, there was an increase in u-AQP2 (25%), u-ENaCγ (19%) and FENa (96%), whereas CH2O decreased (-153%). After isotonic glucose infusion, there was a decrease in u-AQP2 (-16%), ENaCγ (-10%) and FENa (-44%) whereas CH2O increased (164%). AVP remained unchanged after isotonic saline and glucose, but increased after hypertonic saline (139%). PRC, AngII and p-Aldo decreased after isotonic and hypertonic saline infusion, but not after glucose infusion.

Conclusions: Volume expansion with 3% and 0.9% saline increased u-AQP2, while isotonic glucose decreased u-AQP2. Infusion of hypertonic saline increased u-ENaCγ, whereas u-ENaCγ was not significantly changed after isotonic saline and tended to decrease after glucose. Thus, the transport of water and sodium is changed both via the aquaporin 2 water channels and the epithelial sodium channels during all three types of volume expansion to regulate and maintain water- and sodium homeostasis in the body.

Trial registration: Clinical Trial no: NCT01414088.

Figures

Figure 1
Figure 1
Effects of isotonic 0.9% saline (■), hypertonic 3% saline () and isotonic glucose () on urinary excretion of A) u-AQP2 and B) u-ENaCγ adjusted to creatinine, C) plasma concentration of vasopressin (AVP) and D) plasma osmolality in 23 healthy subjects. Values are means ± SEM. Paired t-test was used for comparison of post infusion period 210–240 min vs. baseline. * p < 0.01; ** p < 0.001; *** p < 0.0001.
Figure 2
Figure 2
Effects of isotonic 0.9% saline (■), hypertonic 3% saline () and isotonic glucose () on plasma renin (A), plasma angiontensin II (B) and plasma aldosterone (C) concentrations. Values are expressed as mean ± SEM. General linear model (GLM) with repeated measures within subjects was significant for all three variables. Paired t-test was used for comparison within treatment groups at postinfusion 240 min vs. basal. * p < 0.0001.

References

    1. Rossier BC, Canessa CM, Schild L, Horisberger JD. Epithelial sodium channels. Curr Opin Nephrol Hypertens. 1994;3(5):487–496. doi: 10.1097/00041552-199409000-00003.
    1. Buemi M, Nostro L, Di Pasquale G, Cavallaro E, Sturiale A, Floccari F, Aloisi C, Ruello A, Calapai G, Corica F, Frisina N. Aquaporin-2 water channels in spontaneously hypertensive rats. Am J Hypertens. 2004;17(12 Pt 1):1170–1178.
    1. Su YR, Menon AG. Epithelial sodium channels and hypertension. Drug Metab Dispos. 2001;29(4 Pt 2):553–556.
    1. Nielsen S, Kwon TH, Frokiaer J, Knepper MA. Key roles of renal aquaporins in water balance and water-balance disorders. News Physiol Sci. 2000;15:136–143.
    1. Rossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol. 2002;64:877–897. doi: 10.1146/annurev.physiol.64.082101.143243.
    1. Pedersen RS, Bentzen H, Bech JN, Pedersen EB. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am J Physiol Renal Physiol. 2001;280(5):F860–7.
    1. Graffe CC, Bech JN, Pedersen EB. Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. Am J Physiol Renal Physiol. 2012;302(2):F264–75. doi: 10.1152/ajprenal.00442.2010.
    1. Lauridsen TG, Vase H, Starklint J, Bech JN, Pedersen EB. Protein-enriched diet increases water absorption via the aquaporin-2 water channels in healthy humans. Nephrol Dial Transplant. 2010;25(8):2502–2510. doi: 10.1093/ndt/gfq111.
    1. Matthesen SK, Larsen T, Vase H, Lauridsen TG, Jensen JM, Pedersen EB. Effect of amiloride and spironolactone on renal tubular function and central blood pressure in patients with arterial hypertension during baseline conditions and after furosemide: a double-blinded, randomized, placebo-controlled crossover trial. Clin Exp Hypertens. 2012;35(5):313.
    1. Hager H, Kwon TH, Vinnikova AK, Masilamani S, Brooks HL, Frokiaer J, Knepper MA, Nielsen S. Immunocytochemical and immunoelectron microscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney. Am J Physiol Renal Physiol. 2001;280(6):F1093–106.
    1. Kwon TH, Hager H, Nejsum LN, Andersen ML, Frokiaer J, Nielsen S. Physiology and pathophysiology of renal aquaporins. Semin Nephrol. 2001;21(3):231–238. doi: 10.1053/snep.2001.21647.
    1. Nielsen S. Renal aquaporins: an overview. BJU Int. 2002;90(Suppl 3):1–6.
    1. DiGiovanni SR, Nielsen S, Christensen EI, Knepper MA. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A. 1994;91(19):8984–8988. doi: 10.1073/pnas.91.19.8984.
    1. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013.
    1. Wen H, Frokiaer J, Kwon TH, Nielsen S. Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. J Am Soc Nephrol. 1999;10(7):1416–1429.
    1. Kanno K, Sasaki S, Hirata Y, Ishikawa S, Fushimi K, Nakanishi S, Bichet DG, Marumo F. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med. 1995;332(23):1540–1545. doi: 10.1056/NEJM199506083322303.
    1. Saito T, Ishikawa SE, Sasaki S, Nakamura T, Rokkaku K, Kawakami A, Honda K, Marumo F, Saito T. Urinary excretion of aquaporin-2 in the diagnosis of central diabetes insipidus. J Clin Endocrinol Metab. 1997;82(6):1823–1827. doi: 10.1210/jc.82.6.1823.
    1. Elliot S, Goldsmith P, Knepper M, Haughey M, Olson B. Urinary excretion of aquaporin-2 in humans: a potential marker of collecting duct responsiveness to vasopressin. J Am Soc Nephrol. 1996;7(3):403–409.
    1. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–13373. doi: 10.1073/pnas.0403453101.
    1. Rai T, Sekine K, Kanno K, Hata K, Miura M, Mizushima A, Marumo F, Sasaki S. Urinary excretion of aquaporin-2 water channel protein in human and rat. J Am Soc Nephrol. 1997;8(9):1357–1362.
    1. Pedersen RS, Bentzen H, Bech JN, Nyvad O, Pedersen EB. Urinary aquaporin-2 in healthy humans and patients with liver cirrhosis and chronic heart failure during baseline conditions and after acute water load. Kidney Int. 2003;63(4):1417–1425. doi: 10.1046/j.1523-1755.2003.00858.x.
    1. Baumgarten R, van de Pol MH, Deen PM, van Os CH, Wetzels JF. Dissociation between urine osmolality and urinary excretion of aquaporin-2 in healthy volunteers. Nephrol Dial Transplant. 2000;15(8):1155–1161. doi: 10.1093/ndt/15.8.1155.
    1. Hasler U, Nunes P, Bouley R, Lu HA, Matsuzaki T, Brown D. Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem. 2008;283(39):26643–26661. doi: 10.1074/jbc.M801071200.
    1. Marples D, Christensen BM, Frokiaer J, Knepper MA, Nielsen S. Dehydration reverses vasopressin antagonist-induced diuresis and aquaporin-2 downregulation in rats. Am J Physiol. 1998;275(3 Pt 2):F400–9.
    1. DIRKS JH, CIRKSENA WJ, BERLINER RW. The effects of saline infusion on sodium reabsorption by the proximal tubule of the Dog. J Clin Invest. 1965;44:1160–1170. doi: 10.1172/JCI105223.
    1. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28(1):89–94. doi: 10.1016/0024-3205(81)90370-2.
    1. Singer DR, Shore AC, Markandu ND, Buckley MG, Sagnella GA, MacGregor GA. Dissociation between plasma atrial natriuretic peptide levels and urinary sodium excretion after intravenous saline infusion in normal man. Clin Sci (Lond) 1987;73(3):285–289.
    1. Pedersen EB, Thomsen IM, Lauridsen TG. Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study. BMC Nephrol. 2010;11:26. doi: 10.1186/1471-2369-11-26.
    1. Saito T, Higashiyama M, Nakamura T, Kusaka I, Nagasaka S, Saito T, Ishikawa S. Urinary excretion of the aquaporin-2 water channel exaggerated in pathological states of impaired water excretion. Clin Endocrinol (Oxf) 2001;55(2):217–221. doi: 10.1046/j.1365-2265.2001.01336.x.
    1. Reaux A, De Mota N, Skultetyova I, Lenkei Z, El Messari S, Gallatz K, Corvol P, Palkovits M, Llorens-Cortes C. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem. 2001;77(4):1085–1096. doi: 10.1046/j.1471-4159.2001.00320.x.
    1. De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, Kordon C, Vaudry H, Moos F, Llorens-Cortes C. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci U S A. 2004;101(28):10464–10469. doi: 10.1073/pnas.0403518101.
    1. Azizi M, Iturrioz X, Blanchard A, Peyrard S, De Mota N, Chartrel N, Vaudry H, Corvol P, Llorens-Cortes C. Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol. 2008;19(5):1015–1024. doi: 10.1681/ASN.2007070816.
    1. Edinger RS, Bertrand CA, Rondandino C, Apodaca GA, Johnson JP, Butterworth MB. The epithelial sodium channel (ENaC) establishes a trafficking vesicle pool responsible for its regulation. PLoS One. 2012;7(9):e46593. doi: 10.1371/journal.pone.0046593.
    1. Ecelbarger CA, Kim GH, Terris J, Masilamani S, Mitchell C, Reyes I, Verbalis JG, Knepper MA. Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. Am J Physiol Renal Physiol. 2000;279(1):F46–53.
    1. Schild L. The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta. 2010;1802(12):1159–1165. doi: 10.1016/j.bbadis.2010.06.014.
    1. Butterworth MB. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta. 2010;1802(12):1166–1177. doi: 10.1016/j.bbadis.2010.03.010.
    1. Garty H, Palmer L. Epithelial sodium channels: function, structure and regulation. Physiol Rev. 1997;77(2):359–396.
    1. Andersen LJ, Andersen JL, Schutten HJ, Warberg J, Bie P. Antidiuretic effect of subnormal levels of arginine vasopressin in normal humans. Am J Physiol. 1990;259(1 Pt 2):R53–60.
    1. Bankir L, Fernandes S, Bardoux P, Bouby N, Bichet DG. Vasopressin-V2 receptor stimulation reduces sodium excretion in healthy humans. J Am Soc Nephrol. 2005;16(7):1920–1928. doi: 10.1681/ASN.2004121079.
    1. Ecelbarger CA, Kim GH, Wade JB, Knepper MA. Regulation of the abundance of renal sodium transporters and channels by vasopressin. Exp Neurol. 2001;171(2):227–234. doi: 10.1006/exnr.2001.7775.
    1. Bugaj V, Pochynyuk O, Stockand JD. Activation of the epithelial Na + channel in the collecting duct by vasopressin contributes to water reabsorption. Am J Physiol Renal Physiol. 2009;297(5):F1411–8. doi: 10.1152/ajprenal.00371.2009.
    1. Perucca J, Bichet DG, Bardoux P, Bouby N, Bankir L. Sodium excretion in response to vasopressin and selective vasopressin receptor antagonists. J Am Soc Nephrol. 2008;19(9):1721–1731. doi: 10.1681/ASN.2008010021.
    1. Stockand JD. Vasopressin regulation of renal sodium excretion. Kidney Int. 2010;78(9):849–856. doi: 10.1038/ki.2010.276.
    1. Lauridsen TG, Vase H, Bech JN, Nielsen S, Pedersen EB. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney. Eur J Endocrinol. 2010;162(5):961–969. doi: 10.1530/EJE-10-0030.
    1. Lauridsen TG, Vase H, Starklint J, Graffe CC, Bech JN, Nielsen S, Pedersen EB. Increased renal sodium absorption by inhibition of prostaglandin synthesis during fasting in healthy man. A possible role of the epithelial sodium channels. BMC Nephrol. 2010;11:28. doi: 10.1186/1471-2369-11-28.
    1. Matthesen SK, Larsen T, Vase H, Lauridsen TG, Pedersen EB. Effect of potassium supplementation on renal tubular function, ambulatory blood pressure and pulse wave velocity in healthy humans. Scand J Clin Lab Invest. 2012;72(1):78–86. doi: 10.3109/00365513.2011.635216.
    1. Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A. 1998;95(24):14552–14557. doi: 10.1073/pnas.95.24.14552.
    1. Sandberg MB, Riquier AD, Pihakaski-Maunsbach K, McDonough AA, Maunsbach AB. ANG II provokes acute trafficking of distal tubule Na + -Cl(-) cotransporter to apical membrane. Am J Physiol Renal Physiol. 2007;293(3):F662–9. doi: 10.1152/ajprenal.00064.2007.
    1. Pedersen NB, Hofmeister MV, Rosenbaek LL, Nielsen J, Fenton RA. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule. Kidney Int. 2010;78(2):160–169. doi: 10.1038/ki.2010.130.
    1. Svensen CH, Waldrop KS, Edsberg L, Hahn RG. Natriuresis and the extracellular volume expansion by hypertonic saline. J Surg Res. 2003;113(1):6–12. doi: 10.1016/S0022-4804(03)00128-8.
    1. Andersen LJ, Andersen JL, Pump B, Bie P. Natriuresis induced by mild hypernatremia in humans. Am J Physiol Regul Integr Comp Physiol. 2002;282(6):R1754–61.
    1. Castaneda-Bueno M, Arroyo JP, Gamba G. Independent regulation of Na + and K + balance by the kidney. Med Princ Pract. 2012;21(2):101–114. doi: 10.1159/000332580.
    1. Giebisch GH. A trail of research on potassium. Kidney Int. 2002;62(5):1498–1512. doi: 10.1046/j.1523-1755.2002.t01-2-00644.x.
    1. Butterworth MB, Edinger RS, Frizzell RA, Johnson JP. Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol. 2009;296(1):F10–24.
    1. Butterworth MB, Edinger RS, Johnson JP, Frizzell RA. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol. 2005;125(1):81–101.
    1. Damkjaer M, Isaksson GL, Stubbe J, Jensen BL, Assersen K, Bie P. Renal renin secretion as regulator of body fluid homeostasis. Pflugers Arch. 2012;465(1):153.
    1. Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC) Pflugers Arch. 2009;458(1):111–135. doi: 10.1007/s00424-009-0656-0.
    1. Andersen LJ, Jensen TU, Bestle MH, Bie P. Isotonic and hypertonic sodium loading in supine humans. Acta Physiol Scand. 1999;166(1):23–30. doi: 10.1046/j.1365-201x.1999.00528.x.

Source: PubMed

3
Subskrybuj