Driving pressure and long-term outcomes in moderate/severe acute respiratory distress syndrome

Carlos Toufen Junior, Roberta R De Santis Santiago, Adriana S Hirota, Alysson Roncally S Carvalho, Susimeire Gomes, Marcelo Brito Passos Amato, Carlos Roberto Ribeiro Carvalho, Carlos Toufen Junior, Roberta R De Santis Santiago, Adriana S Hirota, Alysson Roncally S Carvalho, Susimeire Gomes, Marcelo Brito Passos Amato, Carlos Roberto Ribeiro Carvalho

Abstract

Background: Acute respiratory distress syndrome (ARDS) patients may present impaired in lung function and structure after hospital discharge that may be related to mechanical ventilation strategy. The aim of this study was to evaluate the association between functional and structural lung impairment, N-terminal-peptide type III procollagen (NT-PCP-III) and driving pressure during protective mechanical ventilation. It was a secondary analysis of data from randomized controlled trial that included patients with moderate/severe ARDS with at least one follow-up visit performed. We obtained serial measurements of plasma NT-PCP-III levels. Whole-lung computed tomography analysis and pulmonary function test were performed at 1 and 6 months of follow-up. A health-related quality of life survey after 6 months was also performed.

Results: Thirty-three patients were enrolled, and 21 patients survived after 6 months. In extubation day an association between driving pressure and NT-PCP-III was observed. At 1 and 6 months forced vital capacity (FVC) was negatively correlated to driving pressure (p < 0.01). At 6 months driving pressure was associated with lower FVC independently on tidal volume, plateau pressure and baseline static respiratory compliance after adjustments (r2 = 0.51, p = 0.02). There was a significant correlation between driving pressure and lung densities and nonaerated/poorly aerated lung volume after 6 months. Driving pressure was also related to general health domain of SF-36 at 6 months.

Conclusion: Even in patients ventilated with protective tidal volume, higher driving pressure is associated with worse long-term pulmonary function and structure.

Figures

Fig. 1
Fig. 1
Chart of the protocol
Fig. 2
Fig. 2
Relationship between driving pressure and forced vital capacity after 1 month (panel A) and 6 months (panel B) of acute respiratory distress syndrome
Fig. 3
Fig. 3
Mean pulmonary parenchyma density in the whole-lung CT scan in 17 ARDS patients after 6 months of follow-up split based on driving pressure median
Fig. 4
Fig. 4
Relationship between driving pressure and log10 N-terminal-peptide type III procollagen (NT-PCP-III) difference between extubation day and day 0 of acute respiratory distress syndrome
Fig. 5
Fig. 5
Changes in serum level of N-terminal peptide for type III procollagen over time in patients ventilated with driving pressure 2O 24 h after inclusion (N = 9) and patients ventilated with driving pressure ≥ 13 cmH2O 24 h after inclusion (N = 9). (NT-PCP-III = type III procollagen, 1 = day 1 after inclusion, 3 = day 3 after inclusion, 7 = level after extubation or at day 7 after inclusion)

References

    1. Phua J, Badia JR, Adhikari NKJ, Friedrich JO, Fowler RA, Singh JM, et al. Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review. Am J Respir Crit Care Med. 2009;179(3):220–227. doi: 10.1164/rccm.200805-722OC.
    1. Azevedo LC, Park M, Salluh JI, Rea-Neto A, Souza-Dantas VC, Varaschin P, et al. Clinical outcomes of patients requiring ventilatory support in Brazilian intensive care units: a multicenter, prospective, cohort study. Crit Care. 2013;17(2):R63. doi: 10.1186/cc12594.
    1. Franca SA, Toufen C, Hovnanian ALD, Albuquerque ALP, Borges ER, Pizzo VRP, et al. The epidemiology of acute respiratory failure in hospitalized patients: a Brazilian prospective cohort study. J Crit Care. 2011;26(3):330.e1–330.e8. doi: 10.1016/j.jcrc.2010.10.010.
    1. Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med. 2003;348(8):683–693. doi: 10.1056/NEJMoa022450.
    1. Burnham EL, Hyzy RC, Paine R, Coley C, Kelly AM, Quint LE, et al. Chest CT features are associated with poorer quality of life in acute lung injury survivors. Crit Care Med. 2013;41(2):445–456. doi: 10.1097/CCM.0b013e31826a5062.
    1. Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, Blanco J, et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med. 2016;44(1):32–42. doi: 10.1097/CCM.0000000000001383.
    1. Espirometria Pereira C. Diretrizes para testes de função pulmonar. J Bras Pneumol. 2002;28(Supl 3):S1–S82.
    1. Pereira CAdeC, Sato T, Rodrigues SC. New reference values for forced spirometry in white adults in Brazil. J Bras Pneumol. 2007;33(4):397–406. doi: 10.1590/S1806-37132007000400008.
    1. Neder JA, Andreoni S, Castelo-Filho A, Nery LE. Reference values for lung function tests. I. Static volumes. Braz J Med Biol Res. 1999;32(6):703–717. doi: 10.1590/S0100-879X1999000600006.
    1. Neder JA, Andreoni S, Peres C, Nery LE. Reference values for lung function tests. III. Carbon monoxide diffusing capacity (transfer factor) Braz J Med Biol Res. 1999;32(6):729–737. doi: 10.1590/S0100-879X1999000600008.
    1. Camilo GB, Carvalho ARS, Machado DC, Mogami R, Kasuki L, Gadelha MR, et al. Correlations between forced oscillation technique parameters and pulmonary densitovolumetry values in patients with acromegaly. Braz J Med Biol Res = Rev Bras Pesqui médicas e biológicas/Soc Bras Biofísica. 2015;48(10):877–885.
    1. Carvalho AR, Spieth PM, Pelosi P, Beda A, Lopes AJ, Neykova B, et al. Pressure support ventilation and biphasic positive airway pressure improve oxygenation by redistribution of pulmonary blood flow. Anesth Analg. 2009;109(3):856–865. doi: 10.1213/ane.0b013e3181aff245.
    1. Dirksen A, Friis M, Olesen KP, Skovgaard LT, Sørensen K. Progress of emphysema in severe alpha 1-antitrypsin deficiency as assessed by annual CT. Acta Radiol. 1997;38(5):826–832.
    1. Dirksen A, Dijkman JH, Madsen F, Stoel B, Hutchison DC, Ulrik CS, et al. A randomized clinical trial of alpha(1)-antitrypsin augmentation therapy. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1468–1472. doi: 10.1164/ajrccm.160.5.9901055.
    1. Dowson LJ, Guest PJ, Stockley RA. Longitudinal changes in physiological, radiological, and health status measurements in alpha(1)-antitrypsin deficiency and factors associated with decline. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1805–1809. doi: 10.1164/ajrccm.164.10.2106036.
    1. Stolk J, Ng WH, Bakker ME, Reiber JHC, Rabe KF, Putter H, et al. Correlation between annual change in health status and computer tomography derived lung density in subjects with alpha1-antitrypsin deficiency. Thorax. 2003;58(12):1027–1030. doi: 10.1136/thorax.58.12.1027.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117. doi: 10.1164/ajrccm.166.1.at1102.
    1. Ciconelli R, Ferraz M, Santos W, Meinão I. Brazilian–Portuguese version of the SF-36. A reliable and valid quality of life outcome measure. Rev Bras Reum. 1999;39(3):145–150.
    1. Amato MBP, Meade MO, Slutsky AS, Brochard L, Costa ELV, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Cheung AM, Tansey CM, Tomlinson G, Diaz-Granados N, Matté A, Barr A, et al. Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(5):538–544. doi: 10.1164/rccm.200505-693OC.
    1. Heyland DK, Groll D, Caeser M. Survivors of acute respiratory distress syndrome: relationship between pulmonary dysfunction and long-term health-related quality of life. Crit Care Med. 2005;33(7):1549–1556. doi: 10.1097/01.CCM.0000168609.98847.50.
    1. Desai SR, Wells AU, Rubens MB, Evans TW, Hansell DM. Acute respiratory distress syndrome: CT abnormalities at long-term follow-up. Radiology. 1999;210(1):29–35. doi: 10.1148/radiology.210.1.r99ja2629.
    1. Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med. 2016;42(8):1206–1213. doi: 10.1007/s00134-016-4403-7.
    1. Cabrera-Benitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, et al. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology. 2014;121(1):189–198. doi: 10.1097/ALN.0000000000000264.
    1. Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP. Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol. 2005;98(5):1892–1899. doi: 10.1152/japplphysiol.01087.2004.
    1. Parker JC, Breen EC, West JB. High vascular and airway pressures increase interstitial protein mRNA expression in isolated rat lungs. J Appl Physiol. 1997;83(5):1697–1705. doi: 10.1152/jappl.1997.83.5.1697.
    1. Garcia CSNB, Rocco PRM, Facchinetti LD, Lassance RM, Caruso P, Deheinzelin D, et al. What increases type III procollagen mRNA levels in lung tissue: stress induced by changes in force or amplitude? Respir Physiol Neurobiol. 2004;144(1):59–70. doi: 10.1016/j.resp.2004.07.023.
    1. Cardinal-Fernández P, Bajwa EK, Dominguez-Calvo A, Menéndez JM, Papazian L, Thompson BT. The presence of diffuse alveolar damage on open lung biopsy is associated with mortality in patients with acute respiratory distress syndrome. Chest. 2016;149(5):1155–1164. doi: 10.1016/j.chest.2016.02.635.
    1. Gerard L, Bidoul T, Castanares-Zapatero D, Wittebole X, Lacroix V, Froidure A, et al. Open lung biopsy in nonresolving acute respiratory distress syndrome commonly identifies corticosteroid-sensitive pathologies, associated with better outcome. Crit Care Med. 2018;46(6):907–914. doi: 10.1097/CCM.0000000000003081.
    1. Coxson HO, Hogg JC, Mayo JR, Behzad H, Whittall KP, Schwartz DA, et al. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology. Am J Respir Crit Care Med. 1997;155(5):1649–1656. doi: 10.1164/ajrccm.155.5.9154871.
    1. Hart N, Cramer D, Ward SP, Nickol AH, Moxham J, Polkey MI, et al. Effect of pattern and severity of respiratory muscle weakness on carbon monoxide gas transfer and lung volumes. Eur Respir J. 2002;20(4):996–1002. doi: 10.1183/09031936.00.00286702.
    1. Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and functional limitation: data from the Third National Health and Nutrition Examination. J Intern Med. 2003;254(6):540–547. doi: 10.1111/j.1365-2796.2003.01211.x.
    1. Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD. Morbidity and mortality associated with the restrictive spirometric pattern: a longitudinal study. Thorax. 2010;65(6):499–504. doi: 10.1136/thx.2009.126052.
    1. Wan ES, Hokanson JE, Murphy JR, Regan EA, Make BJ, Lynch DA, et al. Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. Am J Respir Crit Care Med. 2011;184(1):57–63. doi: 10.1164/rccm.201101-0021OC.

Source: PubMed

3
Subskrybuj