Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects

T P Ciaraldi, L Abrams, S Nikoulina, S Mudaliar, R R Henry, T P Ciaraldi, L Abrams, S Nikoulina, S Mudaliar, R R Henry

Abstract

A primary human skeletal muscle culture (HSMC) system, which retains cellular integrity and insulin responsiveness for glucose transport was employed to evaluate glucose transport regulation. As previously reported, cells cultured from non-insulin-dependent diabetic (NIDDM) subjects displayed significant reductions in both basal and acute insulin-stimulated transport compared to nondiabetic controls (NC). Fusion/differentiation of NC and NIDDM HSMC in elevated media insulin (from 22 pM to 30 microM) resulted in increased basal transport activities but reduced insulin-stimulated transport, so that cells were no longer insulin responsive. After fusion under hyperinsulinemic conditions, GLUT1 protein expression was elevated in both groups while GLUT4 protein level was unaltered. Fusion of HSMC under hyperglycemic conditions (10 and 20 mM) decreased glucose transport in NC cells only when combined with hyperinsulinemia. Hyperglycemia alone down-regulated transport in HSMC of NIDDM, while the combination of hyperglycemia and hyperinsulinemia had greater effects. In summary: (a) insulin resistance of glucose transport can be induced in HSMC of both NC and NIDDM by hyperinsulinemia and is accompanied by unaltered GLUT4 but increased GLUT1 levels; and (b) HSMC from NIDDM subjects demonstrate an increased sensitivity to impairment of glucose transport by hyperglycemia. These results indicate that insulin resistance in skeletal muscle can be acquired in NC and NIDDM from hyperinsulinemia alone but that NIDDM is uniquely sensitive to the additional influence of hyperglycemia.

References

    1. Nature. 1970 Aug 15;227(5259):680-5
    1. Diabetologia. 1994 Jan;37(1):3-9
    1. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4
    1. Proc Natl Acad Sci U S A. 1981 Jan;78(1):363-7
    1. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623-7
    1. Am J Physiol. 1984 Sep;247(3 Pt 1):E291-6
    1. J Biol Chem. 1986 Dec 5;261(34):16049-53
    1. J Biol Chem. 1987 Jan 5;262(1):189-97
    1. Diabetes. 1987 Sep;36(9):1041-6
    1. Diabetes. 1988 Jun;37(6):667-87
    1. Diabetes. 1988 Jul;37(7):885-90
    1. Diabetologia. 1994 Apr;37(4):401-7
    1. Am J Physiol. 1994 Dec;267(6 Pt 1):E808-13
    1. Diabetologia. 1994 Sep;37 Suppl 2:S149-54
    1. Diabetologia. 1994 Oct;37(10):1025-35
    1. Diabetes. 1995 Aug;44(8):936-46
    1. J Clin Invest. 1988 Aug;82(2):486-94
    1. In Vitro Cell Dev Biol. 1988 Aug;24(8):833-44
    1. Biochem J. 1988 Jun 15;252(3):733-7
    1. J Biol Chem. 1989 Apr 15;264(11):6587-95
    1. J Biol Chem. 1990 Jan 25;265(3):1516-23
    1. J Clin Invest. 1990 Feb;85(2):522-9
    1. Diabetes Care. 1990 Mar;13(3):209-18
    1. Biochem Cell Biol. 1990 Feb;68(2):536-42
    1. Diabetes. 1990 Jul;39(7):865-70
    1. Diabetes. 1990 Aug;39(8):965-74
    1. J Biol Chem. 1990 Oct 25;265(30):18172-9
    1. Diabetologia. 1990 Oct;33(10):625-7
    1. J Clin Invest. 1991 Apr;87(4):1186-94
    1. Am J Physiol. 1991 Jul;261(1 Pt 1):E132-40
    1. Am J Physiol. 1991 Jul;261(1 Pt 1):E87-94
    1. Acta Physiol Scand. 1991 Jun;142(2):255-60
    1. Diabetes. 1992 Feb;41(2):215-21
    1. Diabetologia. 1992 Feb;35(2):143-7
    1. J Cell Biochem. 1992 Jan;48(1):51-60
    1. Biochem J. 1992 Jun 1;284 ( Pt 2):341-8
    1. Diabetes. 1992 Apr;41(4):465-75
    1. Am J Physiol. 1992 Aug;263(2 Pt 1):C443-52
    1. J Clin Invest. 1992 Oct;90(4):1386-95
    1. Trends Biochem Sci. 1992 Oct;17(10):393-9
    1. Diabetes. 1993 Jan;42(1):191-8
    1. J Endocrinol Invest. 1993 Feb;16(2):147-62
    1. J Clin Endocrinol Metab. 1993 Jul;77(1):27-32
    1. J Clin Invest. 1993 Jul;92(1):486-94
    1. Am J Physiol. 1994 Jan;266(1 Pt 1):E1-16
    1. Eur J Biochem. 1994 Feb 1;219(3):713-25
    1. Anal Biochem. 1976 May 7;72:248-54

Source: PubMed

3
Subskrybuj