Xanthohumol microbiome and signature in adults with Crohn's disease (the XMaS trial): a protocol for a phase II triple-masked, placebo-controlled clinical trial

Blake O Langley, Jennifer Joan Ryan, John Phipps, Lita Buttolph, Brenna Bray, Joseph E Aslan, Thomas O Metz, Jan F Stevens, Ryan Bradley, Blake O Langley, Jennifer Joan Ryan, John Phipps, Lita Buttolph, Brenna Bray, Joseph E Aslan, Thomas O Metz, Jan F Stevens, Ryan Bradley

Abstract

Background: Xanthohumol (XN), a bioactive flavonoid from Humulus lupulus with anti-inflammatory properties, has potential benefits for patients with Crohn's disease (CD), a type of inflammatory bowel disease. We recently completed and published results of a placebo-controlled phase I clinical trial demonstrating the safety and tolerability of 24 mg XN daily for 8 weeks. The present study aims to evaluate the safety and tolerability of the same dose of XN adults with clinically active CD in a placebo-controlled phase II clinical trial. Additional aims will assess the impact of XN on inflammatory biomarkers, platelet function, CD clinical activity, and stool microbial composition. The metabolism of XN will also be evaluated. This article provides a model protocol for consideration in investigations of XN or other natural products in disease states.

Methods: A triple-masked, randomized, placebo-controlled trial will be conducted in adults with clinically active CD. Participants (n ≤ 32) will be randomized to either 24 mg encapsulated XN per day or placebo and followed for 8 weeks. Throughout the trial, participants will be queried for adverse events. Biomarkers of clinical safety, blood and stool markers of inflammation, platelet function, Crohn's Disease Activity Index score, stool microbial composition, and XN metabolite profiles in blood, urine, and stool will be assessed every 2 weeks.

Discussion: We describe the protocol for a phase II clinical trial that evaluates the safety and tolerability of XN in adults with active CD, as well as evaluate metabolism and mechanisms that are relevant to CD and other diseases with underlying inflammation and/or gut permeability. The effects of XN on inflammatory biomarkers, platelet function, the microbiota, and multi-omics biomarkers measured in this phase II trial of adults with CD will be compared to the effects of XN in healthy adults in our previous phase I trial. The results of the study will advance the evidence guiding the use of XN in patients with CD.

Trial registration: ClinialTrials.gov NCT04590508. Registered on October 19, 2020.

Keywords: Crohn’s disease; Inflammation; Inflammatory bowel disease; Microbiome; Natural product; Randomized controlled trial; Safety; Tolerability; Xanthohumol.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow of participation

References

    1. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT, Taskforce INPS. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216. doi: 10.1038/s41573-020-00114-z.
    1. Sorkin BC, Kuszak AJ, Bloss G, Fukagawa NK, Hoffman FA, Jafari M, et al. Improving natural product research translation: from source to clinical trial. FASEB J. 2020;34(1):41–65. doi: 10.1096/fj.201902143R.
    1. NCCIH strategic plan FY 2021–2025: Mapping a pathway to research on whole person health. National Center for Complementary and Integrative Health website. . Accessed 15 Apr 2022.
    1. Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry. 2004;65(10):1317–1330. doi: 10.1016/j.phytochem.2004.04.025.
    1. Gerhäuser C, Frank N. Xanthohumol, a new all-rounder? Mol Nutr Food Res. 2005;49(9):821–823. doi: 10.1002/mnfr.200590033.
    1. Zhang Y, Bobe G, Revel JS, Rodrigues RR, Sharpton TJ, Fantacone ML, et al. Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism. Mol Nutr Food Res. 2020;64(1):e1900789. doi: 10.1002/mnfr.201900789.
    1. Stevens JF, Maier CS. The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev. 2016;15(3):425–444. doi: 10.1007/s11101-016-9459-z.
    1. Monteghirfo S, Tosetti F, Ambrosini C, Stigliani S, Pozzi S, Frassoni F, et al. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation. Mol Cancer Ther. 2008;7(9):2692–2702. doi: 10.1158/1535-7163.MCT-08-0132.
    1. Saito K, Matsuo Y, Imafuji H, Okubo T, Maeda Y, Sato T, et al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci. 2018;109(1):132–140. doi: 10.1111/cas.13441.
    1. Albini A, Dell'Eva R, Vené R, Ferrari N, Buhler DR, Noonan DM, et al. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J. 2006;20(3):527–529. doi: 10.1096/fj.05-5128fje.
    1. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol in Vitro. 2013;27(1):149–156. doi: 10.1016/j.tiv.2012.10.008.
    1. Yang L, Broderick D, Campbell Y, Gombart AF, Stevens JF, Jiang Y, et al. Conformational modulation of the farnesoid X receptor by prenylflavonoids: insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. Biochim Biophys Acta. 2016;1864(12):1667–1677. doi: 10.1016/j.bbapap.2016.08.019.
    1. Nozawa H. Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-A(y) mice. Biochem Biophys Res Commun. 2005;336(3):754–761. doi: 10.1016/j.bbrc.2005.08.159.
    1. Shader RI. Safety versus tolerability. Clin Ther. 2018;40(5):672–673. doi: 10.1016/j.clinthera.2018.04.003.
    1. Langley BO, Ryan JJ, Hanes D, Phipps J, Stack E, Metz TO, et al. Xanthohumol microbiome and signature in healthy adults (the XMaS trial): safety and tolerability results of a phase I triple-masked, placebo-controlled clinical trial. Mol Nutr Food Res. 2021;65(8):e2001170. doi: 10.1002/mnfr.202001170.
    1. Hussong R, Frank N, Knauft J, Ittrich C, Owen R, Becker H, et al. A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Mol Nutr Food Res. 2005;49(9):861–867. doi: 10.1002/mnfr.200500089.
    1. Vanhoecke BW, Delporte F, Van Braeckel E, et al. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In Vivo (Brooklyn) 2005;19(1):103–108.
    1. Legette LL, Luna AY, Reed RL, Miranda CL, Bobe G, Proteau RR, et al. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry. 2013;91:236–241. doi: 10.1016/j.phytochem.2012.04.018.
    1. Legette L, Karnpracha C, Reed RL, et al. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Mol Nutr Food Res. 2014;58(2):248–255. doi: 10.1002/mnfr.201300333.
    1. Hall RL, Oser BL. Recent progress in the consideration of flavoring ingredients under the food additives amendment: III.GRAS substances. Food Technol. 1965;19(2):28.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208.
    1. Cook KF, Jensen SE, Schalet BD, Beaumont JL, Amtmann D, Czajkowski S, et al. PROMIS measures of pain, fatigue, negative affect, physical function, and social function demonstrated clinical validity across a range of chronic conditions. J Clin Epidemiol. 2016;73:89–102. doi: 10.1016/j.jclinepi.2015.08.038.
    1. Sandborn WJ, Feagan BG, Hanauer SB, Lochs H, Löfberg R, Modigliani R, et al. A review of activity indices and efficacy endpoints for clinical trials of medical therapy in adults with Crohn’s disease. Gastroenterology. 2002;122(2):512–530. doi: 10.1053/gast.2002.31072.
    1. Liu JK, Lichtenstein GR. Inflammatory bowel disease. In: Ginsberg GG, Gostout CJ, Kochman ML, Norton ID, editors. Clinical gastrointestinal endoscopy. 2. Philadelphia: W.B. Saunders; 2012. pp. 243–264.
    1. Lewis JD, Rutgeerts P, Feagan BG, et al. Correlation of stool frequency and abdominal pain measures with simple endoscopic score for Crohn’s disease. Inflamm Bowel Dis. 2020;26(2):304–313. doi: 10.1093/ibd/izz241.
    1. Moncunill G, Campo JJ, Dobaño C. Quantification of multiple cytokines and chemokines using cytometric bead arrays. Methods Mol Biol. 2014;1172:65–86. doi: 10.1007/978-1-4939-0928-5_6.
    1. Paillaud E, Bastuji-Garin S, Plonquet A, Foucat E, Fournier B, Boutin E, et al. Combined plasma elevation of CRP, intestinal-type fatty acid-binding protein (I-FABP), and sCD14 identify older patients at high risk for health care-associated infections. J Gerontol A Biol Sci Med Sci. 2018;73(2):211–217. doi: 10.1093/gerona/glx106.
    1. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, et al. Increase in plasma endotoxin concentrations and the expression of toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care. 2009;32(12):2281–2287. doi: 10.2337/dc09-0979.
    1. Pastor Rojo O, López San Román A, Albéniz Arbizu E, de la Hera MA, Ripoll Sevillano E, Albillos MA. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(3):269–277. doi: 10.1002/ibd.20019.
    1. Huskens D, Sang Y, Konings J, van der Vorm L, de Laat B, Kelchtermans H, et al. Standardization and reference ranges for whole blood platelet function measurements using a flow cytometric platelet activation test. PLoS One. 2018;13(2):e0192079. doi: 10.1371/journal.pone.0192079.
    1. Babur Ö, Melrose AR, Cunliffe JM, Klimek J, Pang J, Sepp AI, et al. Phosphoproteomic quantitation and causal analysis reveal pathways in GPVI/ITAM-mediated platelet activation programs. Blood. 2020;136(20):2346–2358. doi: 10.1182/blood.2020005496.
    1. Bouranis JA, Beaver LM, Choi J, Wong CP, Jiang D, Sharpton TJ, et al. Composition of the gut microbiome influences production of sulforaphane-nitrile and iberin-nitrile from glucosinolates in broccoli sprouts. Nutrients. 2021;13(9):3013. doi: 10.3390/nu13093013.
    1. Paraiso IL, Tran TQ, Magana AA, Kundu P, Choi J, Maier CS, et al. Xanthohumol ameliorates diet-induced liver dysfunction via farnesoid X receptor-dependent and independent signaling. Front Pharmacol. 2021;12:643857. doi: 10.3389/fphar.2021.643857.
    1. Stevens JF, Taylor AW, Deinzer ML. Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 1999;832(1-2):97–107. doi: 10.1016/S0021-9673(98)01001-2.
    1. Paraiso IL, Plagmann LS, Yang L, Zielke R, Gombart AF, Maier CS, et al. Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium Eubacterium ramulus. Mol Nutr Food Res. 2019;63(2):e1800923. doi: 10.1002/mnfr.201800923.
    1. Ravishankar D, Salamah M, Akimbaev A, Williams HF, Albadawi DAI, Vaiyapuri R, et al. Impact of specific functional groups in flavonoids on the modulation of platelet activation. Sci Rep. 2018;8(1):9528. doi: 10.1038/s41598-018-27809-z.
    1. Senchenkova E, Seifert H, Granger DN. Hypercoagulability and platelet abnormalities in inflammatory bowel disease. Semin Thromb Hemost. 2015;41(6):582–589. doi: 10.1055/s-0035-1556590.
    1. Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg. 2020;78:185–193. doi: 10.1016/j.ijsu.2020.04.018.
    1. Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25(6):789–802.e5. doi: 10.1016/j.chom.2019.05.005.
    1. Fukui H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intest Dis. 2016;1(3):135–145. doi: 10.1159/000447252.
    1. Matei DE, Menon M, Alber DG, Smith AM, Nedjat-Shokouhi B, Fasano A, et al. Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med (N Y) 2021;2(7):864–83.e9.

Source: PubMed

3
Subskrybuj