The impact of diet and lifestyle on gut microbiota and human health

Michael A Conlon, Anthony R Bird, Michael A Conlon, Anthony R Bird

Abstract

There is growing recognition of the role of diet and other environmental factors in modulating the composition and metabolic activity of the human gut microbiota, which in turn can impact health. This narrative review explores the relevant contemporary scientific literature to provide a general perspective of this broad area. Molecular technologies have greatly advanced our understanding of the complexity and diversity of the gut microbial communities within and between individuals. Diet, particularly macronutrients, has a major role in shaping the composition and activity of these complex populations. Despite the body of knowledge that exists on the effects of carbohydrates there are still many unanswered questions. The impacts of dietary fats and protein on the gut microbiota are less well defined. Both short- and long-term dietary change can influence the microbial profiles, and infant nutrition may have life-long consequences through microbial modulation of the immune system. The impact of environmental factors, including aspects of lifestyle, on the microbiota is particularly poorly understood but some of these factors are described. We also discuss the use and potential benefits of prebiotics and probiotics to modify microbial populations. A description of some areas that should be addressed in future research is also presented.

References

    1. Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816.
    1. Scanlan P.D., Shanahan F., Marchesi J.R. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol. 2008;8:79. doi: 10.1186/1471-2180-8-79.
    1. Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J.H., Chinwalla A.T., Creasy H.H., Earl A.M., Fitzgerald M.G., Fulton R.S., et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.
    1. Huse S.M., Ye Y., Zhou Y., Fodor A.A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One. 2012;7:e34242. doi: 10.1371/journal.pone.0034242.
    1. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R, Jarrin C., Chardon P., Marteau P., et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.
    1. Bingham S.A., Day N.E., Luben R., Ferrari P., Slimani N., Norat T., Clavel-Chapelon F., Kesse E., Nieters A., Boeing H., et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. Lancet. 2003;361:1496–1501.
    1. Stephen A.M., Cummings J.H. Mechanism of action of dietary fiber in the human colon. Nature. 1980;284:283–284. doi: 10.1038/284283a0.
    1. Cummings J.H., Bingham S.A., Heaton K.W., Eastwood M.A. Fecal weight, colon cancer risk, and dietary-intake of nonstarch polysaccharides (dietary fiber) Gastroenterology. 1992;103:1783–1789.
    1. Birkett A.M., Jones G.P., de Silva A.M., Young G.P., Muir J.G. Dietary intake and faecal excretion of carbohydrate by Australians: Importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. Eur. J. Clin. Nutr. 1997;51:625–632. doi: 10.1038/sj.ejcn.1600456.
    1. Duncan S.H., Louis P., Thomson J.M., Flint H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2009;11:2112–2122. doi: 10.1111/j.1462-2920.2009.01931.x.
    1. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267. doi: 10.1126/science.1223813.
    1. Cummings J.H., Macfarlane G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991;70:443–459. doi: 10.1111/j.1365-2672.1991.tb02739.x.
    1. Topping D.L., Clifton P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001;81:1031–1064.
    1. Donohoe D.R., Garge N., Zhang X., Sun W., O’Connell T.M., Bunger M.K., Bultman S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell. Metab. 2011;13:517–526. doi: 10.1016/j.cmet.2011.02.018.
    1. Trompette A., Gollwitzer E.S., Yadava K., Sichelstiel A.K., Sprenger N., Ngom-Bru C., Blanchard C., Junt T., Nicod L.P., Harries N.L., et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014;20:159–168.
    1. Trent M.S., Stead C.M., Tran A.X., Hankins J.V. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 2006;12:205–223. doi: 10.1179/096805106X118825.
    1. Kamada N., Chen G., Nunez G. Harnessing pathogen-commensal relations. Nat. Med. 2012;18:1190–1191. doi: 10.1038/nm.2900.
    1. Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547.
    1. Cantarel B.L., Lombard V., Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One. 2012;7:e28742. doi: 10.1371/journal.pone.0028742.
    1. Xu J., Bjursell M.K., Himrod J., Deng S., Carmichael L.K., Chiang H.C., Hooper L.V., Gordon J.I. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. 2003;299:2074–2076. doi: 10.1126/science.1080029.
    1. Sandberg A.S., Andlid T. Phytogenic and microbial phytases in human nutrition. Int. J. Food Sci. Technol. 2002;37:823–833. doi: 10.1046/j.1365-2621.2002.00641.x.
    1. Morvan B., Bonnemoy F., Fonty G., Gouet P. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol. 1996;32:129–133. doi: 10.1007/s002849900023.
    1. Carbonero F., Benefiel A.C., Alizadeh-Ghamsari A.H., Gaskins H.R. Microbial pathways in colonic sulphur metabolism and links with health and disease. Front. Physiol. 2012;3:448. doi: 10.3389/fphys.2012.00448.
    1. Chatterjee S., Park S., Low K., Kong Y., Pimentel M. The degree of breath methane production in IBS correlates with the severity of constipation. Am. J. Gastroenterol. 2007;102:837–841. doi: 10.1111/j.1572-0241.2007.01072.x.
    1. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L.G., Gratadoux J.-J., Blugeon S., Bridonneau C., Furet J.-P., Corthier G., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 2008;105:16731–16736.
    1. Huurre A., Kalliomaki M., Rautava S., Rinne M., Salminen S., Isolauri E. Mode of delivery—Effects on gut microbiota and humoral immunity. Neonatology. 2008;93:236–240. doi: 10.1159/000111102.
    1. Kelly D., King T., Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res. 2007;622:58–69. doi: 10.1016/j.mrfmmm.2007.03.011.
    1. Harmsen H.J., Wildeboer-Veloo A.C.M., Raangs G.C., Wagendorp A.A., Klijn N., Bindels J.G., Welling G.W. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 2000;30:61–67. doi: 10.1097/00005176-200001000-00019.
    1. Coppa G.V., Zampini L., Galeazzi T., Gabrielli O. Prebiotics in human milk: A review. Dig. Liver Dis. 2006;38:S291–S294. doi: 10.1016/S1590-8658(07)60013-9.
    1. Arslanoglu S., Moro G.E., Schmitt J., Tandoi L., Rizzardi S., Boehm G. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J. Nutr. 2008;138:1091–1095.
    1. Barrett M.J., Donoghue V., Mooney E.E., Slevin M., Persaud T., Twomey E., Ryan S., Laffan E., Twomey A. Isolated acute non-cystic white matter injury in term infants presenting with neonatal encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 2013;98:F158–F160. doi: 10.1136/archdischild-2011-301505.
    1. Sghir A., Gramet G., Suau A., Rochet V., Pochart P., Dore J. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 2000;66:2263–2266. doi: 10.1128/AEM.66.5.2263-2266.2000.
    1. Pokusaeva K., Fitzgerald G.F., van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6:285–306. doi: 10.1007/s12263-010-0206-6.
    1. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227.
    1. Lakshminarayanan B., Harris H.M.B., Coakley M., O’Sullivan O., Stanton C., Pruteanu M., Shanahan F., O’Toole P.W., Ross R.P., Consortium E., et al. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J. Med. Microbiol. 2013;62:457–466.
    1. Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sulliva O., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184.
    1. Huxley R.R., Ansary-Moghaddam A., Clifton P., Czernichow S., Parr C.L., Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int. J. Cancer. 2009;125:171–180. doi: 10.1002/ijc.24343.
    1. Benjamin J.L., Hedin C.R.H., Koutsoumpas A., Ng S.C., McCarthy N.E., Prescott N.J., Pessoa-Lopes P., Mathew C.G., Sanderson J., Hart A.L., et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm. Bowel Dis. 2012;18:1092–1100.
    1. Beamish L.A., Osornio-Vargas A.R., Wine E. Air pollution: An environmental factor contributing to intestinal disease. J. Crohns Colitis. 2011;5:279–286. doi: 10.1016/j.crohns.2011.02.017.
    1. Lutgendorff F., Akkermans L.M.A., Soderholm J.D. The role of microbiota and probiotics in stress-induced gastrointestinal damage. Curr. Mol. Med. 2008;8:282–298. doi: 10.2174/156652408784533779.
    1. Grenham S., Clarke G., Cryan J.F., Dinan T.G. Brain-gut-microbe communication in health and disease. Front. Physiol. 2011;2:94. doi: 10.3389/fphys.2011.00094.
    1. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G., Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry. 2013;18:666–673. doi: 10.1038/mp.2012.77.
    1. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–453.
    1. Parracho H., Bingham M.O., Gibson G.R., McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005;54:987–991. doi: 10.1099/jmm.0.46101-0.
    1. Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol. 2011;77:6718–6721. doi: 10.1128/AEM.05212-11.
    1. Clarke S.F., Murphy E.F., O’Sullivan O., Lucy A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920.
    1. Ley R.E., Backhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Delzenne N.M., Cani P.D. Interaction between obesity and the gut microbiota: Relevance in nutrition. Ann. Rev. Nutr. 2011;31:15–31. doi: 10.1146/annurev-nutr-072610-145146.
    1. Lin H.V., Frassetto A., Kowalik E.J., Jr., Nawrocki A.R., Lu M.M., Kosinski J.R., Hubert J.A., Szeto D., Yao X., Forrest G., et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240. doi: 10.1371/journal.pone.0035240..
    1. Collado M.C., Isolauri E., Laitinen K., Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am. J. Clin. Nutr. 2008;88:894–899.
    1. Kalliomaki M., Collado M.C., Salminen S., Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008;87:534–538.
    1. Devkota S., Wang Y., Musch M.W., Leone V., Fehlner-Peach H., Nadimpalli A., Antonopoulos D.A., Jabri B., Chang E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487:104–108.
    1. De Filippo C., Cavalieri D., di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Verdu E.F., Riddle M.S. Chronic gastrointestinal consequences of acute infectious diarrhea: Evolving concepts in epidemiology and pathogenesis. Am. J. Gastroenterol. 2012;107:981–989. doi: 10.1038/ajg.2012.65.
    1. Voigt R.M., Forsyth C.B., Green S.J., Mutlu E., Engen P., Vitaterna M.H., Turek F.W., Keshavarzian A. Circadian disorganization alters intestinal microbiota. PLoS One. 2014;9:e97500. doi: 10.1371/journal.pone.0097500.
    1. Hill M.J. Bacterial fermentation of complex carbohydrate in the human colon. Eur. J. Cancer Prev. 1995;4:353–358. doi: 10.1097/00008469-199510000-00004.
    1. Payne A.N., Chassard C., Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: Implications for host-microbe interactions contributing to obesity. Obes. Rev. 2012;13:799–809. doi: 10.1111/j.1467-789X.2012.01009.x.
    1. Touvier M., Druesne-Pecollo N., Kesse-Guyot E., Andreeva V.A., Fezeu L., Galan P., Hercberg S., Latino-Martel P. Dual association between polyphenol intake and breast cancer risk according to alcohol consumption level: A prospective cohort study. Breast Cancer Res. Treat. 2013;137:225–236. doi: 10.1007/s10549-012-2323-y.
    1. Tuohy K.M., Conterno L., Gasperotti M., Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 2012;60:8776–8782. doi: 10.1021/jf2053959.
    1. Lee H.C., Jenner A.M., Low C.S., Lee Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 2006;157:876–884. doi: 10.1016/j.resmic.2006.07.004.
    1. Tzounis X., Rodriguez-Mateos A., Vulevic J., Gibson G.R., Kwik-Uribe C., Spencer J.P.E. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr. 2011;93:62–72. doi: 10.3945/ajcn.110.000075.
    1. Martin F.-P.J., Montoliu I., Nagy K., Moco S., Collino S., Guy P., Redeuil K., Scherer M., Rezzi S., Kochhar S., et al. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J. Proteome Res. 2012;11:6252–6263.
    1. Gill S.R., Pop M., DeBoy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Fraser-Liggett C.M., Nelson K.E., et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–1359.
    1. Baghurst P.A., Baghurst K.I., Record S.J. Dietary fibre, non-starch polysaccharides and resistant starch—A review. Food Aust. 1996;48:S3–S35.
    1. Murphy N., Norat T., Ferrari P., Jenab M., Bueno-de-Mesquita B., Skeie G., Dahm C.C., Overvad K., Olsen A., Tjønneland A., et al. Dietary fibre intake and risks of cancers of the colon and rectum in the European Prospective Investigation into Cancer and Nutrition (EPIC) PLoS One. 2012;7:e39361. doi: 10.1371/journal.pone.0039361..
    1. Aune D., Chan D.S.M., Lau R., Vieira R., Greenwood D.C., Kampman E., Norat T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617. doi: 10.1136/bmj.d6617.
    1. Bodinham C.L., Smith L., Wright J., Frost G.S., Robertson M.D. Dietary fibre improves first-phase insulin secretion in overweight individuals. PloS One. 2012;7:e40834. doi: 10.1371/journal.pone.0040834.
    1. Hauner H., Bechthold A., Boeing H., Broenstrup A., Buyken A., Leschik-Bonnet E., Linseisen J., Schulze M., Strohm D., Wolfram G., et al. Evidence-based guideline of the German Nutrition Society: Carbohydrate Intake and prevention of nutrition-related diseases. Ann. Nutr. MeTab. 2012;60:1–58.
    1. Sleeth M., Psichas A., Frost G. Weight gain and insulin sensitivity: A role for the glycaemic index and dietary fibre? Br. J. Nutr. 2013;109:1539–1541. doi: 10.1017/S0007114512005016.
    1. Windey K., de Preter V., Verbeke K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 2012;56:184–196. doi: 10.1002/mnfr.201100542.
    1. Mitchell B.L., Lawson M.J., Davies M., Grant A.K., Roediger W.E.W., Illman R.J., Topping D.L. Volatile fatty-acids in the human intestine—Studies in surgical patients. Nutr. Res. 1985;5:1089–1092. doi: 10.1016/S0271-5317(85)80140-8.
    1. Spiller G.A., Chernoff M.C., Hill R.A., Gates J.E., Nassar J.J., Shipley E.A. Effect of purified cellulose, pectin, and a low-residue diet on fecal volatile fatty-acids, transit-time, and fecal weight in humans. Am. J. Clin. Nutr. 1980;33:754–759.
    1. Roediger W.E.W. Role of anaerobic-bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980;21:793–798. doi: 10.1136/gut.21.9.793.
    1. Fung K.Y.C., Cosgrove L., Lockett T., Head R., Topping D.L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 2012;108:820–831. doi: 10.1017/S0007114512001948.
    1. Binder H.J. Role of colonic short-chain fatty acid transport in diarrhea. Ann. Rev. Physiol. 2010;72:297–313. doi: 10.1146/annurev-physiol-021909-135817.
    1. Wycherley T.P., Noakes M., Clifton P.M., Cleanthous X., Keogh J.B., Brinkworth G.D. A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetes Care. 2010;33:969–976. doi: 10.2337/dc09-1974.
    1. Chao A., Thun M.J., Connell C.J., McCullough M.L., Jacobs E.J., Flanders W.D., Rodriguez C., Sinha R., Calle E.E. Meat consumption and risk of colorectal cancer. JAMA. 2005;97:906–916.
    1. Norat T., Bingham S., Ferrari P., Slimani N., Jenab M., Mazuir M., Overvad K., Olsen A., Tjonneland A., Clavel F., et al. Meat, fish, and colorectal cancer risk: The European Prospective Investigation into Cancer and Nutrition. J. Natl. Cancer Inst. 2005;97:906–916.
    1. World Cancer Research Fund . Food, Nutrition, Physical Activity, and the Prevention of Colon Cancer: A Global Perspective. American Institute for Cancer Research; Washington, DC, USA: 2007.
    1. World Cancer Research Fund . Food, Nutrition, Physical Activity, and the Prevention of Colorectal Cancer. American Institute for Cancer Research; Washington, DC, USA: 2011. Continuous Update Project Report.
    1. Alexander D.D., Cushing C.A. Red meat and colorectal cancer: A critical summary of prospective epidemiological studies. Obes. Rev. 2011;12:e472–e493. doi: 10.1111/j.1467-789X.2010.00785.x.
    1. Oostindjer M., Alexander J., Vang G., Andersen G., Bryan N.S., Chen D., Corpet D.E., de Smet S., Dragsted L.O., Haug A., et al. The role of red and processed meat in colorectal cancer development: A perspective. Meat Sci. 2014;97:583–596.
    1. Silvester K.R., Cummings J.H. Does digestibility of meat protein help explain large-bowel cancer risk. Nutr. Cancer. 1995;24:279–288. doi: 10.1080/01635589509514417.
    1. Macfarlane G.T., Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012;95:50–60. doi: 10.5740/jaoacint.SGE_Macfarlane.
    1. Hughes R., Magee E.A., Bingham S. Protein degradation in the large intestine: Relevance to colorectal cancer. Curr. Issues Intest. Microbiol. 2000;1:51–58.
    1. Toden S., Bird A.R., Topping D.L., Conlon M.A. Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutr. Cancer. 2005;51:45–51. doi: 10.1207/s15327914nc5101_7.
    1. Toden S., Bird A.R., Topping D.L., Conlon M.A. Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch. Br. J. Nutr. 2007;97:535–543. doi: 10.1017/S0007114507336817.
    1. Toden S., Bird A.R., Topping D.L., Conlon M.A. Dose-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain fatty acids. Cancer Biol. Ther. 2007;6:253–258. doi: 10.4161/cbt.6.2.3627.
    1. Toden S., Bird A.R., Topping D.L., Conlon M.A. High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: Attenuation by high-amylose maize starch. Carcinogenesis. 2007;28:2355–2362. doi: 10.1093/carcin/bgm216.
    1. Russell W.R., Gratz S.W., Duncan S.H., Holtrop G., Ince J., Scobbie L., Duncan G., Johnstone A.M., Lobley G.E., Wallace R.J., et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011;93:1062–1072.
    1. Shaughnessy D.T., Gangarosa L.M., Schliebe B., Umbach D.M., Xu Z., MacIntosh B., Knize M.G., Matthews P.P., Swank A.E., Sandler R.S., et al. Inhibition of fried meat-induced colorectal DNA damage and altered systemic genotoxicity in humans by crucifera, chlorophyllin, and yogurt. PLoS One. 2011;6:e18707. doi: 10.1371/journal.pone.0018707..
    1. Humphreys K.J., Conlon M.A., Young G.P., Topping D.L., Hu Y., Winter J.M., Bird A.R., Cobiac L., Kennedy N.A., Michael M.A., et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: A randomized trial. Cancer Prev. Res. 2014;7:786–795.
    1. Brinkworth G.D., Noakes M., Clifton P.M., Bird A.R. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr. 2009;101:1493–1502. doi: 10.1017/S0007114508094658.
    1. Windey K., de Preter V., Iouat T., Schuit F., Herman J., Vansant G., Verbeke K. Modulation of protein fermentation does not affect fecal water toxicity: A randomized cross-over study in healthy subjects. PLoS One. 2012;7:e52387. doi: 10.1371/journal.pone.0052387.
    1. Lin H.C., Visek W.J. Colon mucosal cell damage by ammonia in rats. J. Nutr. 1991;121:887–893.
    1. Kramer H. Dietary patterns, calories, and kidney disease. Adv. Chronic Kidney Dis. 2013;20:135–140. doi: 10.1053/j.ackd.2012.12.004.
    1. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L., et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585.
    1. Moreira A.P.B., Texeira T.F.S., Ferreira A.B., Peluzio Mdo C., Alfenas Rde C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 2012;108:801–809. doi: 10.1017/S0007114512001213.
    1. Ou J., de Lany J.P., Zhang M., Sharma S., O’Keefe S.J.D. Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr. Cancer. 2012;64:34–40. doi: 10.1080/01635581.2012.630164.
    1. Ridlon J.M., Kang D.-J., Hylemon P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200.
    1. Soto-Vaca A., Gutierrez A., Losso J.N., Xu Z., Finley J.W. Evolution of phenolic compounds from color and flavor problems to health benefits. J. Agric. Food Chem. 2012;60:6658–6677. doi: 10.1021/jf300861c.
    1. Manach C., Williamson G., Morand C., Scalbert A., Remesy C. Bioavailability and bioefficacy of polyphenols in humans I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S.
    1. Selma M.V., Espin J.C., Tomas-Barberan F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009;57:6485–6501. doi: 10.1021/jf902107d.
    1. Forester S.C., Waterhouse A.L. Metabolites are key to understanding health effects of wine polyphenolics. J. Nutr. 2009;139:1824S–1831S. doi: 10.3945/jn.109.107664.
    1. Grün C.H., van Dorsten F.A., Jacobs D.M., le Belleguic M., van Velzen E.J.J., Bingham M.O., Janssen H.-G., van Duynhoven J.P.M. GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008;871:212–219. doi: 10.1016/j.jchromb.2008.04.039.
    1. Lee C.Y. Challenges in providing credible scientific evidence of health benefits of dietary polyphenols. J. Funct. Foods. 2013;5:524–526. doi: 10.1016/j.jff.2012.10.018.
    1. Gross G., Jacobs D.M., Peters S., Possemiers S., van Duynhoven J., Vaughan E.E., van de Wiele T. In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong interindividual variability. J. Agric. Food Chem. 2010;58:10236–10246. doi: 10.1021/jf101475m.
    1. Van Nuenen M., Venema K., van der Woude J.C.J., Kuipers E.J. The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig. Dis. Sci. 2004;49:485–491. doi: 10.1023/B:DDAS.0000020508.64440.73.
    1. Cordain L., Eaton S.B., Sebastian A., Mann N., Lindeberg S., Watkins B.A., O’Keefe J.H., Brand-Miller J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005;81:341–354.
    1. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
    1. Jeffery I.B., Claesson M.J., O’Toole P.W., Shanahan F. Categorization of the gut microbiota: Enterotypes or gradients? Nat. Rev. Microbiol. 2012;10:591–592. doi: 10.1038/nrmicro2859.
    1. Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108.
    1. Lin A., Bik E.M., Costello E.K., Dethlefsen L., Haque R., Relman D.A., Singh U. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One. 2013;8:e53838. doi: 10.1371/journal.pone.0053838.
    1. Purushe J., Fouts D.E., Morrison M., White B.A., Mackie R.I., North American Consortium for Rumen Bacteria. Coutinho P.M., Henrissat B., Nelson K.E. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: Insights into their environmental niche. Microb. Ecol. 2010;60:721–729. doi: 10.1007/s00248-010-9692-8.
    1. Liszt K., Zwielehner J., Handschur M., Hippe B., Thaler R., Haslberger A.G. Characterization of bacteria, clostridia and Bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann. Nutr. Metab. 2009;54:253–257. doi: 10.1159/000229505.
    1. Kabeerdoss J., Devi R.S., Mary R.R., Ramakrishna B.S. Faecal microbiota composition in vegetarians: Comparison with omnivores in a cohort of young women in southern India. Br. J. Nutr. 2012;108:953–957. doi: 10.1017/S0007114511006362.
    1. Frank D.N., Amand A.L.S., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA. 2007;104:13780–13785. doi: 10.1073/pnas.0706625104.
    1. Gore C., Munro K., Lay C., Bibiloni R., Morris J., Woodcock A., Custovic A., Tannock G.W. Bifidobacterium pseudocatenulatum is associated with atopic eczema: A nested case-control study investigating the fecal microbiota of infants. J. Allergy Clin. Immunol. 2008;121:135–140. doi: 10.1016/j.jaci.2007.07.061.
    1. Schwiertz A., Taras D., Schaefer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18:190–195. doi: 10.1038/oby.2009.167.
    1. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550.
    1. Nava G.M., Carbonero F., Ou J., Benefiel A.C., O’Keefe S.J., Gaskins H.R. Hydrogenotrophic microbiota distinguish native Africans from African and European Americans. Environ. Microbiol. Rep. 2012;4:307–315. doi: 10.1111/j.1758-2229.2012.00334.x.
    1. Magee E.A., Richardson C.J., Hughes R., Cummings J.H. Contribution of dietary protein to sulfide production in the large intestine: An in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 2000;72:1488–1494.
    1. O’Keefe S.J.D., Kidd M., Espitalier-Noel G., Owira P. Rarity of colon cancer in Africans is associated with low animal product consumption, not fiber. Am. J. Gastroenterol. 1999;94:1373–1380. doi: 10.1111/j.1572-0241.1999.01089.x.
    1. Jumpertz R., Duc Son L., Turnbaugh P.J., Trinidad C., Bogardus C., Gordon J.I., Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011;94:58–65. doi: 10.3945/ajcn.110.010132.
    1. Hildebrandt M.A., Hoffmann C., Sherrill-Mix S.A., Keilbaugh S.A., Hamady M., Chen Y.-Y., Knight R., Ahima R.S., Bushman F., Wu G.D., et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–1724.
    1. Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M., Gibson G.R., Delzenne N.M. Selective increases of Bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374–2383. doi: 10.1007/s00125-007-0791-0.
    1. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772.
    1. Neyrinck A.M., Possemiers S., Verstraete W., de Backer F., Cani P.D., Delzenne N.M. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J. Nutr. Biochem. 2012;23:51–59.
    1. Deplancke B., Gaskins H.R. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 2001;73:1131S–1141S.
    1. Kim Y.S., Ho S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010;12:319–330. doi: 10.1007/s11894-010-0131-2.
    1. Hedemann M.S., Theil P.K., Knudsen K.E.B. The thickness of the intestinal mucous layer in the colon of rats fed various sources of non-digestible carbohydrates is positively correlated with the pool of SCFA but negatively correlated with the proportion of butyric acid in digesta. Br. J. Nutr. 2009;102:117–125. doi: 10.1017/S0007114508143549.
    1. Femia A.P., Giannini A., Fazi M., Tarquini E., Salvadori M., Roncucci L., Tonelli F., Dolara P., Caderni G. Identification of mucin depleted foci in the human colon. Cancer Prev. Res. 2008;1:562–567. doi: 10.1158/1940-6207.CAPR-08-0125.
    1. Femia A.P., Swidsinski A., Dolara P., Salvadori M., Amedei A., Caderni G. Mucin depleted foci, colonic preneoplastic lesions lacking Muc2, show up-regulation of Tlr2 but not bacterial infiltration. PLoS One. 2012;7:e29918. doi: 10.1371/journal.pone.0029918.
    1. Johansson M.E.V., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:15064–15069. doi: 10.1073/pnas.0803124105.
    1. Png C.W., Linden S.K., Gilshenan K.S., Zoetendal E.G., McSweeney C.S., Sly L.I., McGuckin M.A., Florin T.H.J. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 2010;105:2420–2428. doi: 10.1038/ajg.2010.281.
    1. Collado M.C., Derrien M., Isolauri E., de Vos W.M., Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 2007;73:7767–7770. doi: 10.1128/AEM.01477-07.
    1. Kerr C.A., Grice D.M., Tran C.D., Bauer D.C., Li D., Hendry P., Hannan G.N. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit. Rev. Microbiol. 2014 in press.
    1. Hooper L.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science. 2012;336:1268–1273. doi: 10.1126/science.1223490.
    1. Lebouvier T., Chaumette T., Paillusson S., Duyckaerts C., des Varannes S.B., Neunlist M., Derkinderen P. The second brain and Parkinson’s disease. Eur. J. Neurosci. 2009;30:735–741. doi: 10.1111/j.1460-9568.2009.06873.x.
    1. Awad R.A. Neurogenic bowel dysfunction in patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson’s disease. World J. Gastroenterol. 2011;17:5035–5048. doi: 10.3748/wjg.v17.i46.5035.
    1. Forsyth C.B., Shannon K.M., Kordower J.H., Voigt R.M., Shaikh M., Jaglin J.A., Estes J.D., Dodiya H.B., Keshavarzian A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s Disease. PLoS One. 2011;6:e28032. doi: 10.1371/journal.pone.0028032.
    1. Braak H., Rub U., Gai W.P., del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 2003;110:517–536. doi: 10.1007/s00702-002-0808-2.
    1. Esteve E., Ricart W., Fernandez-Real J.-M. Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: Did gut microbiote co-evolve with insulin resistance? Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:483–490. doi: 10.1097/MCO.0b013e328348c06d.
    1. Frazier T.H., DiBaise J.K., McClain C.J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. J. Parenter. Enter. Nutr. 2011;35:14S–20S. doi: 10.1177/0148607111413772.
    1. Cani P.D., Osto M., Geurts L., Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3:279–288. doi: 10.4161/gmic.19625.
    1. Anders H.-J., Andersen K., Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010–1016. doi: 10.1038/ki.2012.440.
    1. Piya M.K., Harte A.L., McTernan P.G. Metabolic endotoxaemia: Is it more than just a gut feeling? Curr. Opin. Lipidol. 2013;24:78–85. doi: 10.1097/MOL.0b013e32835b4431.
    1. Arumugam M., Raes J., Pelletier E., le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180.
    1. McOrist A.L., Miller R.B., Bird A.R., Keogh J.B., Noakes M., Topping D.L., Conlon M.A. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J. Nutr. 2011;141:883–889. doi: 10.3945/jn.110.128504.
    1. Abell G.C.J., Cooke C.M., Bennett C.N., Conlon M.A., McOrist A.L. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol. Ecol. 2008;66:505–515. doi: 10.1111/j.1574-6941.2008.00527.x.
    1. Walker A.W., Ince J., Duncan S.H., Webster L.M., Holtrop G., Ze X., Brown D., Stares M.D., Scott P., Bergerat A., et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–230.
    1. Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota—Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412.
    1. Gibson G.R., Scott K.P., Rastall R.A., Tuohy K.M., Hotchkiss A., Dubert-Ferrandon A., Gareau M., Murphy E.F., Saulnier D., Loh G., et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods. 2010;7:1–19. doi: 10.1616/1476-2137.15880.
    1. Bird A.R., Topping D.L. Resistant starch as a prebiotic. In: Versalovic J., Wilson M., editors. Therapeutic Microbiology: Probiotics and Related Strategies. ASM Press; Washington, DC, USA: 2008. pp. 159–173.
    1. Clark M.J., Robien K., Slavin J.L. Effect of prebiotics on biomarkers of colorectal cancer in humans: A systematic review. Nutr. Rev. 2012;70:436–443. doi: 10.1111/j.1753-4887.2012.00495.x.
    1. Roberfroid M., Gibson G.R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010;104:S1–S63.
    1. Brownawell A.M., Caers W., Gibson G.R., Kendall C.W.C., Lewis K.D., Ringel Y., Slavin J.L. Prebiotics and the health benefits of fiber: Current regulatory status, future research, and goals. J. Nutr. 2012;142:962–974. doi: 10.3945/jn.112.158147.
    1. Saad N., Delattre C., Urdaci M., Schmitter J.M., Bressollier P. An overview of the last advances in probiotic and prebiotic field. LWT Food Sci. Technol. 2013;50:1–16. doi: 10.1016/j.lwt.2012.05.014.
    1. Delzenne N.M., Neyrinck A.M., Backhed F., Cani P.D. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 2011;7:639–646. doi: 10.1038/nrendo.2011.126.
    1. Van Loo J., Coussement P., de Leenheer L., Hoebregs H., Smits G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr. 1995;35:525–552. doi: 10.1080/10408399509527714.
    1. Bird A.R., Conlon M.A., Christophersen C.T., Topping D.L. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes. 2010;1:423–431. doi: 10.3920/BM2010.0041.
    1. Conlon M.A., Bird A.R., Regina A., Morell M.K., Lockett T., Kang S., Molloy P., Kerr C.A., Shaw J., McSweeney C., et al. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a western diet. J. Nutr. 2012;142:832–840.
    1. Roberfroid M. Prebiotics: The concept revisited. J. Nutr. 2007;137:830S–837S.
    1. Bird A.R., Lopez-Rubio A., Shrestha A.K., Gidley M.J. Resistant starch in vitro and in vivo: Factors determining yield, structure, and physiological relevance. In: Kasapsis S., Norton I.T., Ubbink J.B., editors. Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Application. Academic Press; Burlington, MA, USA: 2009. pp. 449–510.
    1. Tremaroli V., Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552.
    1. Crittenden R., Bird A.R., Gopal P., Henriksson A., Lee Y.K., Payne M.J. Probiotic research in Australia, New Zealand and the Asia-Pacific region. Curr. Pharm. Des. 2005;11:37–53. doi: 10.2174/1381612053382304.
    1. Floch M.H., Walker W.A., Madsen K., Sanders M.E., Macfarlane G.T., Flint H.J., Dieleman L.A., Ringel Y., Guandalini S., Kelley C.P., et al. Recommendations for probiotic use—2011 update. J. Clin. Gastroenterol. 2011;45:S168–S171.
    1. Khani S., Hosseini H.M., Taheri M., Nourani M.R., Imani Fooladi A.A. Probiotics as an alternative strategy for prevention and treatment of human diseases: A review. Inflamm. Allergy Drug Targets. 2012;11:79–89. doi: 10.2174/187152812800392832.
    1. Mugambi M.N., Musekiwa A., Lombard M., Young T., Blaauw R. Probiotics, prebiotics infant formula use in preterm or low birth weight infants: A systematic review. Nutr. J. 2012;11:58. doi: 10.1186/1475-2891-11-58.
    1. Johnston B.C., Ma S.S.Y., Goldenberg J.Z., Thorlund K., Vandvik P.O., Loeb M., Guyatt G.H. Probiotics for the prevention of Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Ann. Intern. Med. 2012;157:878–888. doi: 10.7326/0003-4819-157-12-201212180-00563.
    1. Hosseini A., Nikfar S., Abdollahi M. Probiotics use to treat irritable bowel syndrome. Expert Opin. Biol. Ther. 2012;12:1323–1334. doi: 10.1517/14712598.2012.707179.
    1. Augustin M.A., Sanguansri L., Lockett T. Nano- and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann. N. Y. Acad. Sci. 2013;1290:107–112. doi: 10.1111/nyas.12130.
    1. Cook M.T., Tzortzis G., Charalampopoulos D., Khutoryanskiy V.V. Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release. 2012;162:56–67. doi: 10.1016/j.jconrel.2012.06.003.

Source: PubMed

3
Subskrybuj