Moderate Load Eccentric Exercise; A Distinct Novel Training Modality

Hans Hoppeler, Hans Hoppeler

Abstract

Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400-500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20-30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery.

Keywords: COPD; alpine skiing; eccentric exercise; rehabi; sarcopenia.

Figures

Figure 1
Figure 1
(A) Indicates with the difference in slope that energy demand as expressed by oxygen consumption is much lower in eccentric than in concentric contractions. (B) Demonstrates that eccentric contractions need much lower central nervous activation expressed as EMG activity to produce similar torques than concentric contractions (with permission from Hoppeler, 2014).
Figure 2
Figure 2
As indicated by the continuous line, torque decreases with increasing (positive) angular velocity while it increases and then stays constant with negative angular velocities. As a consequence, power (angular velocity × torque) has an optimum in concentric contractions and the decreases at higher angular velocities. Negative power increases first and then continues to increase with higher (negative) angular velocities. This indicates, that extremely high values of negative power can be achieved putting muscle tissue at risk (with permission from Hoppeler, 2014).
Figure 3
Figure 3
Eccentric ergometer custom built for the Swiss National ski-team, capable of providing loads up to 2000 W. As shown, this ergometer can be used in a sitting and in a standing position (with permission from Hoppeler, 2014).

References

    1. Bedoya A. A., Miltenberger M. R., Lopez R. M. (2015). Plyometric training effects on athletic performance in youth soccer athletes: a systematic review. J. Strength Cond. Res. 29, 2351–2360. 10.1519/JSC.0000000000000877
    1. Beral V., Bull D., Green J., Reeves G. (2007). Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 369, 1703–1710. 10.1016/S0140-6736(07)60534-0
    1. Berg H. E., Eiken O. (1999). Muscle control in elite alpine skiing. Med. Sci. Sports Exerc. 31, 1065–1067. 10.1097/00005768-199907000-00022
    1. Berg H. E., Tesch A. (1994). A gravity-independent ergometer to be used for resistance training in space. Aviat. Space Environ. Med. 65, 752–756.
    1. Besson D., Joussain C., Gremeaux V., Morisset C., Laurent Y., Casillas J. M., et al. . (2013). Eccentric training in chronic heart failure: feasibility and functional effects. Results of a comparative study. Ann. Phys. Rehabil. Med. 56, 30–40. 10.1016/j.rehab.2013.01.003
    1. Biewener A. A. (1998). Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 120, 73–87. 10.1016/S0305-0491(98)00024-8
    1. Bigland-Ritchie B., Woods J. J. (1976). Integrated electromyogram and oxygen uptake during positive and negative work. J. Physiol. 260, 267–277. 10.1113/jphysiol.1976.sp011515
    1. Blazevich A. J., Cannavan D., Coleman D. R., Horne S. (2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J. Appl. Physiol. (1985) 103, 1565–1575. 10.1152/japplphysiol.00578.2007
    1. Brughelli M., Cronin J. (2007). Altering the length-tension relationship with eccentric exercise: implications for performance and injury. Sports Med. 37, 807–826. 10.2165/00007256-200737090-00004
    1. Buchheit M., Laursen P. B. (2013). High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 43, 313–338. 10.1007/s40279-013-0029-x
    1. Casillas J. M., Besson D., Hannequin A., Gremeaux V., Morisset C., Tordi N., et al. . (2016). Effects of an eccentric training personalized by a low rate of perceived exertion on the maximal capacities in chronic heart failure: a randomized controlled trial. Eur. J. Phys. Rehabil. Med. 52, 159–168.
    1. Celli A. (2015). Triceps tendon rupture: the knowledge acquired from the anatomy to the surgical repair. Musculoskelet. Surg. 99 (Suppl. 1), S57–S66. 10.1007/s12306-015-0359-y
    1. Chelly S. M., Denis C. (2001). Leg power and hopping stiffness: relationship with sprint running performance. Med. Sci. Sports Exerc. 33, 326–333. 10.1097/00005768-200102000-00024
    1. Dibble L. E., Hale T. F., Marcus R. L., Gerber J. P., LaStayo P. C. (2009). High intensity eccentric resistance training decreases bradykinesia and improves quality of life in persons with Parkinson's disease: a preliminary study. Parkinsonism Relat. Disord. 15, 752–757. 10.1016/j.parkreldis.2009.04.009
    1. Dieli-Conwright C. M., Spektor T. M., Rice J. C., Sattler F. R., Schroeder E. T. (2009). Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. J. Appl. Physiol. (1985) 107, 1381–1388. 10.1152/japplphysiol.00590.2009
    1. Dieli-Conwright C. M., Spektor T. M., Rice J. C., Sattler F. R., Schroeder E. T. (2012). Hormone therapy and maximal eccentric exercise alters myostatin-related gene expression in postmenopausal women. J. Strength Cond. Res. 26, 1374–1382. 10.1519/JSC.0b013e318251083f
    1. Dragoo J. L., Braun H. J., Durham J. L., Chen M. R., Harris A. H. (2012). Incidence and risk factors for injuries to the anterior cruciate ligament in National Collegiate Athletic Association football: data from the 2004–2005 through 2008–2009 National Collegiate Athletic Association Injury Surveillance System. Am. J. Sports Med. 40, 990–995. 10.1177/0363546512442336
    1. Fang Y., Siemionow V., Sahgal V., Xiong F., Yue G. H. (2004). Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions. Brain Res. 1023, 200–212. 10.1016/j.brainres.2004.07.035
    1. Frohm A., Halvorsen K., Thorstensson A. (2005). A new device for controlled eccentric overloading in training and rehabilitation. Eur. J. Appl. Physiol. 94, 168–174. 10.1007/s00421-004-1298-8
    1. Garber C. E., Blissmer B., Deschenes M. R., Franklin B. A., Lamonte M. J., Lee I. M., et al. . (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359. 10.1249/MSS.0b013e318213fefb
    1. Gerber J. P., Marcus R. L., Dibble L. E., Greis P. E., Burks R. T., LaStayo P. C. (2007a). Effects of early progressive eccentric exercise on muscle structure after anterior cruciate ligament reconstruction. J. Bone Joint Surg. Am. 89, 559–570. 10.2106/JBJS.F.00385
    1. Gerber J. P., Marcus R. L., Dibble L. E., Greis P. E., Burks R. T., Lastayo P. C. (2007b). Safety, feasibility, and efficacy of negative work exercise via eccentric muscle activity following anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 37, 10–18. 10.2519/jospt.2007.2362
    1. Gerber J. P., Marcus R. L., Dibble L. E., Greis P. E., Burks R. T., LaStayo P. C. (2009). Effects of early progressive eccentric exercise on muscle size and function after anterior cruciate ligament reconstruction: a 1-year follow-up study of a randomized clinical trial. Phys. Ther. 89, 51–59. 10.2522/ptj.20070189
    1. Gerber J. P., Marcus R. L., Dibble L. E., Greis P. E., LaStayo P. C. (2006). Early application of negative work via eccentric ergometry following anterior cruciate ligament reconstruction: a case report. J. Orthop. Sports Phys. Ther. 36, 298–307. 10.2519/jospt.2006.2197
    1. Gremeaux V., Duclay J., Deley G., Philipp J. L., Laroche D., Pousson M., et al. . (2010). Does eccentric endurance training improve walking capacity in patients with coronary artery disease? A randomized controlled pilot study. Clin. Rehabil. 24, 590–599. 10.1177/0269215510362322
    1. Gross M., Lüthy F., Kroell J., Müller E., Hoppeler H., Vogt M. (2010). Effects of eccentric cycle ergometry in alpine skiers. Int. J. Sports Med. 31, 572–576. 10.1055/s-0030-1254082
    1. Hansen P. A., Dechet C. B., Porucznik C. A., Lastayo P. C. (2009). Comparing eccentric resistance exercise in prostate cancer survivors on and off hormone therapy: a pilot study. PM R 1, 1019–1024. 10.1016/j.pmrj.2009.09.016
    1. Hayes H. A., Gappmaier E., LaStayo P. C. (2011). Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial. J. Neurol. Phys. Ther. 35, 2–10. 10.1097/NPT.0b013e31820b5a9d
    1. Herzog W., Schappacher G., DuVall M., Leonard T. R., Herzog J. A. (2016). Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology (Bethesda) 31, 300–312. 10.1152/physiol.00049.2014
    1. Hess G. W. (2010). Achilles tendon rupture: a review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec. 3, 29–32. 10.1177/1938640009355191
    1. Hill A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B Biol. Sci. 126, 136–195. 10.1098/rspb.1938.0050
    1. Hoppeler H. (2014). Eccentric Exercise: Physiology and Application in Sport and Rehabilitation. London: Routledge.
    1. Hoppeler H. (2016). Molecular networks in skeletal muscle plasticity. J. Exp. Biol. 219, 205–213. 10.1242/jeb.128207
    1. Hoppeler H., Herzog W. (2014). Eccentric exercise: many questions unanswered. J. Appl. Physiol. (1985) 116, 1405–1406. 10.1152/japplphysiol.00239.2014
    1. Hortobágyi T., DeVita P. (2000). Favorable neuromuscular and cardiovascular responses to 7 days of exercise with an eccentric overload in elderly women. J. Gerontol. A Biol. Sci. Med. Sci. 55, B401–B410. 10.1093/gerona/55.8.B401
    1. LaStayo P. C., Larsen S., Smith S., Dibble L., Marcus R. (2010). The feasibility and efficacy of eccentric exercise with older cancer survivors: a preliminary study. J. Geriatr. Phys. Ther. 33, 135–140.
    1. LaStayo P. C., Pierotti D. J., Pifer J., Hoppeler H., Lindstedt S. L. (2000). Eccentric ergometry: increases in locomotor muscle size and strength at low training intensities. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1282–R1288.
    1. Lastayo P. C., Reich T. E., Urquhart M., Hoppeler H., Lindstedt S. L. (1999). Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen. Am. J. Physiol. 276, R611–R615.
    1. LaStayo P., Marcus R., Dibble L., Frajacomo F., Lindstedt S. (2014). Eccentric exercise in rehabilitation: safety, feasibility, and application. J. Appl. Physiol. (1985) 116, 1426–1434. 10.1152/japplphysiol.00008.2013
    1. LaStayo P., McDonagh P., Lipovic D., Napoles P., Bartholomew A., Esser K., et al. . (2007). Elderly patients and high force resistance exercise–a descriptive report: can an anabolic, muscle growth response occur without muscle damage or inflammation? J. Geriatr. Phys. Ther. 30, 128–134. 10.1519/00139143-200712000-00008
    1. Lewis P. B., Ruby D., Bush-Joseph C. A. (2012). Muscle soreness and delayed-onset muscle soreness. Clin. Sports Med. 31, 255–262. 10.1016/j.csm.2011.09.009
    1. Lindstedt S. L., Reich T. E., Keim P., LaStayo P. C. (2002). Do muscles function as adaptable locomotor springs? J. Exp. Biol. 205, 2211–2216.
    1. Marcus R. L., Lastayo P. C., Dibble L. E., Hill L., McClain D. A. (2009). Increased strength and physical performance with eccentric training in women with impaired glucose tolerance: a pilot study. J. Womens. Health 18, 253–260. 10.1089/jwh.2007.0669
    1. Marcus R. L., Smith S., Morrell G., Addison O., Dibble L. E., Wahoff-Stice D., et al. . (2008). Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus. Phys. Ther. 88, 1345–1354. 10.2522/ptj.20080124
    1. McHugh M. P. (2003). Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand. J. Med. Sci. Sports 13, 88–97. 10.1034/j.1600-0838.2003.02477.x
    1. Meyer K., Steiner R., Lastayo P., Lippuner K., Allemann Y., Eberli F., et al. . (2003). Eccentric exercise in coronary patients: central hemodynamic and metabolic responses. Med. Sci. Sports Exerc. 35, 1076–1082. 10.1249/01.MSS.0000074580.79648.9D
    1. Milanović Z., Sporiš G., Weston M. (2015). Effectiveness of High-Intensity Interval Training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 45, 1469–1481. 10.1007/s40279-015-0365-0
    1. Mueller M., Breil F. A., Lurman G., Klossner S., Flück M., Billeter R., et al. . (2011). Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology 57, 528–538. 10.1159/000323267
    1. Mueller M., Breil F. A., Vogt M., Steiner R., Lippuner K., Popp A., et al. . (2009). Different response to eccentric and concentric training in older men and women. Eur. J. Appl. Physiol. 107, 145–153. 10.1007/s00421-009-1108-4
    1. Nedergaard A., Henriksen K., Karsdal M. A., Christiansen C. (2013a). Menopause, estrogens and frailty. Gynecol. Endocrinol. 29, 418–423. 10.3109/09513590.2012.754879
    1. Nedergaard A., Henriksen K., Karsdal M. A., Christiansen C. (2013b). Musculoskeletal ageing and primary prevention. Best Pract. Res. Clin. Obstet. Gynaecol. 27, 673–688. 10.1016/j.bpobgyn.2013.06.001
    1. Park S. W., Goodpaster B. H., Strotmeyer E. S., De Rekeneire N., Harris T. B., Schwartz A. V., et al. . (2006). Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes 55, 1813–1818. 10.2337/db05-1183
    1. Potier T. G., Alexander C. M., Seynnes O. R. (2009). Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur. J. Appl. Physiol. 105, 939–944. 10.1007/s00421-008-0980-7
    1. Pujol N., Blanchi M. P., Chambat P. (2007). The incidence of anterior cruciate ligament injuries among competitive Alpine skiers: a 25-year investigation. Am. J. Sports Med. 35, 1070–1074. 10.1177/0363546507301083
    1. Reeves N. D., Maganaris C. N., Longo S., Narici M. V. (2009). Differential adaptations to eccentric versus conventional resistance training in older humans. Exp. Physiol. 94, 825–833. 10.1113/expphysiol.2009.046599
    1. Reich T. E., Lindstedt S. L., LaStayo P. C., Pierotti D. J. (2000). Is the spring quality of muscle plastic? Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1661–R1666.
    1. Reid S., Hamer P., Alderson J., Lloyd D. (2010). Neuromuscular adaptations to eccentric strength training in children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 52, 358–363. 10.1111/j.1469-8749.2009.03409.x
    1. Rocha Vieira D. S., Baril J., Richard R., Perrault H., Bourbeau J., Taivassalo T. (2011). Eccentric cycle exercise in severe COPD: feasibility of application. COPD 8, 270–274. 10.3109/15412555.2011.579926
    1. Roig M., O'Brien K., Kirk G., Murray R., McKinnon P., Shadgan B., et al. . (2009). The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br. J. Sports Med. 43, 556–568. 10.1136/bjsm.2008.051417
    1. Rooyackers J. M., Dekhuijzen P. N., van Herwaarden C. L., Folgering H. T. (1997). Ventilatory response to positive and negative work in patients with chronic obstructive pulmonary disease. Respir. Med. 91, 143–149. 10.1016/S0954-6111(97)90050-0
    1. Rosenberg I. H. (1997). Sarcopenia: origins and clinical relevance. J. Nutr. 127, 990S–991S.
    1. Rösler K., Hoppeler H., Conley K. E., Claassen H., Gehr P., Howald H. (1985). Transfer effects in endurance exercise. Adaptations in trained and untrained muscles. Eur. J. Appl. Physiol. Occup. Physiol. 54, 355–362. 10.1007/BF02337178
    1. Sacco D. E., Sartorelli D. H., Vane D. W. (1998). Evaluation of alpine skiing and snowboarding injury in a northeastern state. J. Trauma 44, 654–659. 10.1097/00005373-199804000-00016
    1. Sekiguchi H., Kohno Y., Hirano T., Akai M., Nakajima Y., Nakazawa K. (2007). Modulation of corticospinal excitability during lengthening and shortening contractions in the first dorsal interosseus muscle of humans. Exp. Brain Res. 178, 374–384. 10.1007/s00221-006-0743-9
    1. Sigal R. J., Kenny G. P., Wasserman D. H., Castaneda-Sceppa C., White R. D. (2006). Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care 29, 1433–1438. 10.2337/dc06-9910
    1. Spitzenpfeil P. (2001). Vibrationsbelastungen im alpinen Skirennlauf: Analyse - Simulation - Training. Dissertation, de Verlag im Internet GmbH, 161ff.
    1. Steiner R., Meyer K., Lippuner K., Schmid J. P., Saner H., Hoppeler H. (2004). Eccentric endurance training in subjects with coronary artery disease: a novel exercise paradigm in cardiac rehabilitation? Eur. J. Appl. Physiol. 91, 572–578. 10.1007/s00421-003-1000-6
    1. Theodorou A. A., Panayiotou G., Paschalis V., Nikolaidis M. G., Kyparos A., Mademli L., et al. . (2013). Stair descending exercise increases muscle strength in elderly males with chronic heart failure. BMC Res. Notes 6:87. 10.1186/1756-0500-6-87
    1. Vásquez-Morales A., Sanz-Valero J., Wanden-Berghe C. (2013). [Eccentric exercise as preventive physical option in people over 65 years: a systematic review of the scientific literature]. Enferm. Clin. 23, 48–55. 10.1016/j.enfcli.2013.01.003
    1. Vikne H., Refsnes P. E., Ekmark M., Medbø J. I., Gundersen V., Gundersen K. (2006). Muscular performance after concentric and eccentric exercise in trained men. Med. Sci. Sports Exerc. 38, 1770–1781. 10.1249/01.mss.0000229568.17284.ab
    1. Vogt M., Hoppeler H. (2011). Eccentric Exercise in Alpine Skiing. Aachen: Meyer & Meyer.
    1. Vogt M., Hoppeler H. (2012). Competitive Alpine Skiing: Combining Strength and Endurance Training: Molecular Bases and Applications. Aachen: Meyer & Meyer.
    1. Wilk K. E., Escamilla R. F., Fleisig G. S., Barrentine S. W., Andrews J. R., Boyd M. L. (1996). A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am. J. Sports Med. 24, 518–527. 10.1177/036354659602400418

Source: PubMed

3
Subskrybuj