Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study

Sisse Rye Ostrowski, Nicolai Haase, Rasmus Beier Müller, Morten Hylander Møller, Frank Christian Pott, Anders Perner, Pär Ingemar Johansson, Sisse Rye Ostrowski, Nicolai Haase, Rasmus Beier Müller, Morten Hylander Møller, Frank Christian Pott, Anders Perner, Pär Ingemar Johansson

Abstract

Introduction: Patients with severe sepsis often present with concurrent coagulopathy, microcirculatory failure and evidence of vascular endothelial activation and damage. Given the critical role of the endothelium in balancing hemostasis, we investigated single-point associations between whole blood coagulopathy by thrombelastography (TEG) and plasma/serum markers of endothelial activation and damage in patients with severe sepsis.

Methods: A post-hoc multicenter prospective observational study in a subgroup of 184 patients from the Scandinavian Starch for Severe Sepsis/Septic Shock (6S) Trial. Study patients were admitted to two Danish intensive care units. Inclusion criteria were severe sepsis, pre-intervention whole blood TEG measurement and a plasma/serum research sample available from baseline (pre-intervention) for analysis of endothelial-derived biomarkers. Endothelial-derived biomarkers were measured in plasma/serum by enzyme-linked immunosorbent assay (syndecan-1, thrombomodulin, protein C (PC), tissue-type plasminogen activator and plasminogen activator inhibitor-1). Pre-intervention TEG, functional fibrinogen (FF) and laboratory and clinical data, including mortality, were retrieved from the trial database.

Results: Most patients presented with septic shock (86%) and pulmonary (60%) or abdominal (30%) focus of infection. The median (IQR) age was 67 years (59 to 75), and 55% were males. The median SOFA and SAPS II scores were 8 (6 to 10) and 56 (41 to 68), respectively, with 7-, 28- and 90-day mortality rates being 21%, 39% and 53%, respectively. Pre-intervention (before treatment with different fluids), TEG reaction (R)-time, angle and maximum amplitude (MA) and FF MA all correlated with syndecan-1, thrombomodulin and PC levels. By multivariate linear regression analyses, higher syndecan-1 and lower PC were independently associated with TEG and FF hypocoagulability at the same time-point: 100 ng/ml higher syndecan-1 predicted 0.64 minutes higher R-time (SE 0.25), 1.78 mm lower TEG MA (SE 0.87) and 0.84 mm lower FF MA (SE 0.42; all P < 0.05), and 10% lower protein C predicted 1.24 mm lower TEG MA (SE 0.31).

Conclusions: In our cohort of patients with severe sepsis, higher circulating levels of biomarkers of mainly endothelial damage were independently associated with hypocoagulability assessed by TEG and FF. Endothelial damage is intimately linked to coagulopathy in severe sepsis.

Trial registration: Clinicaltrials.gov number: NCT00962156. Registered 13 July 2009.

Figures

Figure 1
Figure 1
Thrombelastography (TEG) and functional fibrinogen (FF) variables in 184 patients with severe sepsis stratified according to plasma syndecan-1 quartiles. The median and interquartile ranges (A-D) or proportions (C) are shown for: A) TEG reaction time (R-time; minutes), B) TEG angle (degrees), C) TEG maximum clot strength (MA; mm), D) FF MA (mm) and E) Ly30 > 0% (proportion). The influence of syndecan-1 quartile in Figure 1A-D on TEG and FF variables were investigated by linear regression analysis with syndecan-1 quartile as the explanatory variable, with results displayed as regression coefficients (β) with 95% confidence intervals and P values. Presence of fibrinolysis (Ly30 > 0%) across syndecan-1 quartiles in Figure 1E was investigated by Cochran-Armitage Trend Test, with results displayed as P values.

References

    1. Schouten M, Wiersinga WJ, Levi M. der PT v. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83:536–545. doi: 10.1189/jlb.0607373.
    1. Angus DC, van der PT. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–851. doi: 10.1056/NEJMra1208623.
    1. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363:689–691. doi: 10.1056/NEJMcibr1007320.
    1. Faust SN, Levin M, Harrison OB, Goldin RD, Lockhart MS, Kondaveeti S, et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med. 2001;345:408–416. doi: 10.1056/NEJM200108093450603.
    1. Ueno H, Hirasawa H, Oda S, Shiga H, Nakanishi K, Matsuda K. Coagulation/fibrinolysis abnormality and vascular endothelial damage in the pathogenesis of thrombocytopenic multiple organ failure. Crit Care Med. 2002;30:2242–2248. doi: 10.1097/00003246-200210000-00011.
    1. Lin SM, Wang YM, Lin HC, Lee KY, Huang CD, Liu CY, et al. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Crit Care Med. 2008;36:683–689. doi: 10.1097/CCM.0B013E31816537D8.
    1. Levi M, Opal SM. Coagulation abnormalities in critically ill patients. Crit Care. 2006;10:222. doi: 10.1186/cc4975.
    1. Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation: lessons from the classical literature. Ann Surg. 2011;254:10–19. doi: 10.1097/SLA.0b013e31821221b1.
    1. Asakura H, Ontachi Y, Mizutani T, Kato M, Saito M, Kumabashiri I, et al. An enhanced fibrinolysis prevents the development of multiple organ failure in disseminated intravascular coagulation in spite of much activation of blood coagulation. Crit Care Med. 2001;29:1164–1168. doi: 10.1097/00003246-200106000-00015.
    1. Gando S. Role of fibrinolysis in sepsis. Semin Thromb Hemost. 2013;39:392–399. doi: 10.1055/s-0033-1334140.
    1. Johansson PI, Stissing T, Bochsen L, Ostrowski SR. Thrombelastography and tromboelastometry in assessing coagulopathy in trauma. Scand J Trauma Resusc Emerg Med. 2009;17:45. doi: 10.1186/1757-7241-17-45.
    1. Collins PW, Macchiavello LI, Lewis SJ, Macartney NJ, Saayman AG, Luddington R, et al. Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls. Br J Haematol. 2006;135:220–227. doi: 10.1111/j.1365-2141.2006.06281.x.
    1. Gonano C, Sitzwohl C, Meitner E, Weinstabl C, Kettner SC. Four-day antithrombin therapy does not seem to attenuate hypercoagulability in patients suffering from sepsis. Crit Care. 2006;10:R160. doi: 10.1186/cc5098.
    1. Daudel F, Kessler U, Folly H, Lienert JS, Takala J, Jakob SM. Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: a prospective cohort study. Crit Care. 2009;13:R42. doi: 10.1186/cc7765.
    1. Sivula M, Pettila V, Niemi TT, Varpula M, Kuitunen AH. Thromboelastometry in patients with severe sepsis and disseminated intravascular coagulation. Blood Coagul Fibrinolysis. 2009;20:419–426. doi: 10.1097/MBC.0b013e32832a76e1.
    1. Johansson PI, Stensballe J, Vindelov N, Perner A, Espersen K. Hypocoagulability, as evaluated by thrombelastography, at admission to the ICU is associated with increased 30-day mortality. Blood Coagul Fibrinolysis. 2010;21:168–174. doi: 10.1097/MBC.0b013e3283367882.
    1. Sharma P, Saxena R. A novel thromboelastographic score to identify overt disseminated intravascular coagulation resulting in a hypocoagulable state. Am J Clin Pathol. 2010;134:97–102. doi: 10.1309/AJCPPZ4J6CAFYDVM.
    1. Adamzik M, Eggmann M, Frey UH, Gorlinger K, Brocker-Preuss M, Marggraf G, et al. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit Care. 2010;14:R178. doi: 10.1186/cc9284.
    1. Adamzik M, Langemeier T, Frey UH, Gorlinger K, Saner F, Eggebrecht H, et al. Comparison of thrombelastometry with SAPS II and SOFA scores for the prediction of 30-day survival: a cohort study. Shock. 2011;35:339–342. doi: 10.1097/SHK.0b013e318204bff6.
    1. Ostrowski SR, Windeløv NA, Ibsen M, Haase N, Perner A, Johansson PI. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: a prospective study. J Crit Care. 2013;28:317. e1–11.
    1. Haase N, Ostrowski SR, Johansson PI, Wetterslev J, Lange T, Hyllner M, et al. Thrombelastography in patients with severe sepsis: a prospective cohort study. Intensive Care Med. 2015;41:77–85. doi: 10.1007/s00134-014-3552-9.
    1. Muller MC, Meijers JC, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18:R30. doi: 10.1186/cc13721.
    1. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–3561.
    1. Monroe DM, Hoffman M. What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol. 2006;26:41–48. doi: 10.1161/01.ATV.0000193624.28251.83.
    1. Aird WC. Endothelium as an organ system. Crit Care Med. 2004;32:S271–S279. doi: 10.1097/01.CCM.0000129669.21649.40.
    1. van HV. Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol. 2012;34:93–106.
    1. Campbell RA, Overmyer KA, Bagnell CR, Wolberg AS. Cellular procoagulant activity dictates clot structure and stability as a function of distance from the cell surface. Arterioscler Thromb Vasc Biol. 2008;28:2247–2254. doi: 10.1161/ATVBAHA.108.176008.
    1. Holcomb JB. A novel and potentially unifying mechanism for shock induced early coagulopathy. Ann Surg. 2011;254:201–202. doi: 10.1097/SLA.0b013e318226483d.
    1. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245:812–818. doi: 10.1097/01.sla.0000256862.79374.31.
    1. Adrie C, Monchi M, Laurent I, Um S, Yan SB, Thuong M, et al. Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. J Am Coll Cardiol. 2005;46:21–28. doi: 10.1016/j.jacc.2005.03.046.
    1. Zambruni A, Thalheimer U, Coppell J, Riddell A, Mancuso A, Leandro G, et al. Endogenous heparin-like activity detected by anti-Xa assay in infected cirrhotic and non-cirrhotic patients. Scand J Gastroenterol. 2004;39:830–836. doi: 10.1080/00365520410004433.
    1. Agarwal S, Senzolo M, Melikian C, Burroughs A, Mallett SV. The prevalence of a heparin-like effect shown on the thromboelastograph in patients undergoing liver transplantation. Liver Transpl. 2008;14:855–860. doi: 10.1002/lt.21437.
    1. Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock. 2008;30:623–627. doi: 10.1097/SHK.0b013e3181777da3.
    1. Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011;165:136–141. doi: 10.1016/j.jss.2009.04.034.
    1. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73:60–66. doi: 10.1097/TA.0b013e31825b5c10.
    1. Wada T, Gando S, Mizugaki A, Yanagida Y, Jesmin S, Yokota H, et al. Coagulofibrinolytic changes in patients with disseminated intravascular coagulation associated with post-cardiac arrest syndrome–fibrinolytic shutdown and insufficient activation of fibrinolysis lead to organ dysfunction. Thromb Res. 2013;132:e64–e69. doi: 10.1016/j.thromres.2013.05.010.
    1. Johansson PI, Ostrowski SR. Acute coagulopathy of trauma: balancing progressive catecholamine induced endothelial activation and damage by fluid phase anticoagulation. Med Hypotheses. 2010;75:564–567. doi: 10.1016/j.mehy.2010.07.031.
    1. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N Engl J Med. 2012;367:124–134. doi: 10.1056/NEJMoa1204242.
    1. von EE, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–7.
    1. Johansson PI, Haase N, Perner A, Ostrowski SR. Association between sympathoadrenal activation, fibrinolysis and endothelial damage in septic patients: a prospective study. J Crit Care. 2014;29:327–333. doi: 10.1016/j.jcrc.2013.10.028.
    1. Sivula M, Tallgren M, Pettila V. Modified score for disseminated intravascular coagulation in the critically ill. Intensive Care Med. 2005;31:1209–1214. doi: 10.1007/s00134-005-2685-2.
    1. Johansson PI, Bochsen L, Andersen S, Viuff D. Investigation of the effect of kaolin and tissue factor-activated citrated whole blood, on clot forming variables, as evaluated by thromboelastography. Transfusion. 2008;48:2377–2383. doi: 10.1111/j.1537-2995.2008.01846.x.
    1. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896–1906. doi: 10.1161/CIRCULATIONAHA.106.684852.
    1. Blann A, Seigneur M. Soluble markers of endothelial cell function. Clin Hemorheol Microcirc. 1997;17:3–11.
    1. Blann AD. Endothelial cell activation, injury, damage and dysfunction: separate entities or mutual terms? Blood Coagul Fibrinolysis. 2000;11:623–630. doi: 10.1097/00001721-200010000-00006.
    1. Ishii H, Uchiyama H, Kazama M. Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells. Thromb Haemost. 1991;65:618–623.
    1. Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med. 2005;15:302–308. doi: 10.1016/j.tcm.2005.09.005.
    1. Reinhart K, Bayer O, Brunkhorst F, Meisner M. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med. 2002;30:S302–S312. doi: 10.1097/00003246-200205001-00021.
    1. Senzolo M, Coppell J, Cholongitas E, Riddell A, Triantos CK, Perry D, et al. The effects of glycosaminoglycans on coagulation: a thromboelastographic study. Blood Coagul Fibrinolysis. 2007;18:227–236. doi: 10.1097/MBC.0b013e328010bd3d.
    1. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–359. doi: 10.1007/s00424-007-0212-8.
    1. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87:300–310. doi: 10.1093/cvr/cvq137.
    1. Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and altered microvascular permeability. J Pathol. 2012;226:562–574. doi: 10.1002/path.3964.
    1. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–394. doi: 10.1093/bja/aer515.
    1. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–3777. doi: 10.1182/blood-2002-06-1887.
    1. Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol. 2012;302:H499–H505. doi: 10.1152/ajpheart.00325.2011.
    1. Esmon CT. The protein C pathway. Chest. 2003;124:26S–32S. doi: 10.1378/chest.124.3_suppl.26S.
    1. Sakata Y, Curriden S, Lawrence D, Griffin JH, Loskutoff DJ. Activated protein C stimulates the fibrinolytic activity of cultured endothelial cells and decreases antiactivator activity. Proc Natl Acad Sci U S A. 1985;82:1121–1125. doi: 10.1073/pnas.82.4.1121.
    1. van HV, Bertina RM, van WA, van Tilburg NH, Emeis JJ, Haverkate F. Activated protein C decreases plasminogen activator-inhibitor activity in endothelial cell-conditioned medium. Blood. 1985;65:444–51.
    1. Rezaie AR. Vitronectin functions as a cofactor for rapid inhibition of activated protein C by plasminogen activator inhibitor-1. Implications for the mechanism of profibrinolytic action of activated protein C. J Biol Chem. 2001;276:15567–15570. doi: 10.1074/jbc.C100123200.
    1. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254:194–200. doi: 10.1097/SLA.0b013e318226113d.
    1. Ostrowski SR, Sørensen AM, Windeløv NA, Perner A, Welling KL, Wanscher M, et al. High levels of soluble VEGF receptor 1 early after trauma are associated with shock, sympathoadrenal activation, glycocalyx degradation and inflammation. Scand J Trauma Resusc Emerg Med. 2012;20:27. doi: 10.1186/1757-7241-20-27.
    1. Ganter MT, Cohen MJ, Brohi K, Chesebro BB, Staudenmayer KL, Rahn P, et al. Angiopoietin-2, marker and mediator of endothelial activation with prognostic significance early after trauma? Ann Surg. 2008;247:320–326. doi: 10.1097/SLA.0b013e318162d616.
    1. Kozar RA, Peng Z, Zhang R, Holcomb JB, Pati S, Park P, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112:1289–1295. doi: 10.1213/ANE.0b013e318210385c.
    1. Haywood-Watson RJ, Holcomb JB, Gonzalez EA, Peng Z, Pati S, Park PW, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0023530.
    1. Grundmann S, Fink K, Rabadzhieva L, Bourgeois N, Schwab T, Moser M, et al. Perturbation of the endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation. 2012;83:715–720. doi: 10.1016/j.resuscitation.2012.01.028.
    1. Gando S, Nanzaki S, Morimoto Y, Kobayashi S, Kemmotsu O. Out-of-hospital cardiac arrest increases soluble vascular endothelial adhesion molecules and neutrophil elastase associated with endothelial injury. Intensive Care Med. 2000;26:38–44. doi: 10.1007/s001340050009.
    1. Adams JA. Endothelium and cardiopulmonary resuscitation. Crit Care Med. 2006;34:S458–S465. doi: 10.1097/01.CCM.0000246012.68479.49.
    1. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208:2581–2590. doi: 10.1084/jem.20111354.
    1. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;107:3507–3512. doi: 10.1073/pnas.1222878110.
    1. Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67:125–131. doi: 10.1097/TA.0b013e31818b2483.
    1. Ives C, Inaba K, Branco BC, Okoye O, Schochl H, Talving P, et al. Hyperfibrinolysis elicited via thromboelastography predicts mortality in trauma. J Am Coll Surg. 2012;215:496–02. doi: 10.1016/j.jamcollsurg.2012.06.005.
    1. Cotton BA, Harvin JA, Kostousouv V, Minei KM, Radwan ZA, Schochl H, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73:365–370. doi: 10.1097/TA.0b013e31825c1234.
    1. Kashuk JL, Moore EE, Sawyer M, Le T, Johnson J, Biffl WL, et al. Postinjury coagulopathy management: goal directed resuscitation via POC thrombelastography. Ann Surg. 2010;251:604–614. doi: 10.1097/SLA.0b013e3181d3599c.
    1. Sawamura A, Hayakawa M, Gando S, Kubota N, Sugano M, Wada T, et al. Disseminated intravascular coagulation with a fibrinolytic phenotype at an early phase of trauma predicts mortality. Thromb Res. 2009;124:608–613. doi: 10.1016/j.thromres.2009.06.034.
    1. Hayakawa M, Sawamura A, Gando S, Kubota N, Uegaki S, Shimojima H, et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery. 2011;149:221–230. doi: 10.1016/j.surg.2010.06.010.
    1. Schochl H, Cadamuro J, Seidl S, Franz A, Solomon C, Schlimp CJ, et al. Hyperfibrinolysis is common in out-of-hospital cardiac arrest: results from a prospective observational thromboelastometry study. Resuscitation. 2013;84:454–459. doi: 10.1016/j.resuscitation.2012.08.318.
    1. Viersen VA, Greuters S, Korfage AR, Van der Rijst C, Van BV, Nanayakkara PW, et al. Hyperfibrinolysis in out of hospital cardiac arrest is associated with markers of hypoperfusion. Resuscitation. 2012;83:1451–1455. doi: 10.1016/j.resuscitation.2012.05.008.
    1. Kim J, Kim K, Lee JH, Jo YH, Kim T, Rhee JE, et al. Prognostic implication of initial coagulopathy in out-of-hospital cardiac arrest. Resuscitation. 2013;84:48–53. doi: 10.1016/j.resuscitation.2012.09.003.
    1. Opal SM. Phylogenetic and functional relationships between coagulation and the innate immune response. Crit Care Med. 2000;28:S77–S80. doi: 10.1097/00003246-200009001-00017.
    1. Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately? Blood. 2009;114:2367–2374. doi: 10.1182/blood-2009-05-199208.
    1. Levi M, van der PT. Inflammation and coagulation. Crit Care Med. 2010;38:S26–S34. doi: 10.1097/CCM.0b013e3181c98d21.

Source: PubMed

3
Subskrybuj