PON-1 Activity and Plasma 8-Isoprostane Concentration in Patients with Angiographically Proven Coronary Artery Disease

Agnieszka Kuchta, Adrian Strzelecki, Agnieszka Ćwiklińska, Magdalena Totoń, Marcin Gruchała, Zbigniew Zdrojewski, Barbara Kortas-Stempak, Anna Gliwińska, Kamil Dąbkowski, Maciej Jankowski, Agnieszka Kuchta, Adrian Strzelecki, Agnieszka Ćwiklińska, Magdalena Totoń, Marcin Gruchała, Zbigniew Zdrojewski, Barbara Kortas-Stempak, Anna Gliwińska, Kamil Dąbkowski, Maciej Jankowski

Abstract

The aim of the study was to estimate association of the extent of angiographically proven coronary artery disease (CAD) with plasma 8-isoprostane F2 (8-iso-PGF2α) levels as a reliable marker of lipid peroxidation and serum activity of paraoxonase-1, which demonstrates the ability to protect against lipid oxidation. The study included 105 patients with angiographically documented CAD (CAD+) and 45 patients with negative results of coronary angiography (CAD-). Compared to the control group CAD+ patients were characterized by increased 8-iso-PGF2α levels (P = 0.007) and reduced activity of PON-1 towards paraoxon (PONase, P = 0.002) and phenyl acetate (AREase, P = 0.037). Univariate correlation analysis indicated that 8-iso-PGF2α concentrations were positively associated with the severity of CAD as evaluated by the Gensini score (R = 0.41, P < 0.001) while PONase activity (R = -0.26, P < 0.05) and AREase activity (R = -0.23, P < 0.05) were inversely correlated with CAD severity. PONase activity and 8-iso-PGF2α concentration remained independent determinant of atherosclerosis severity in multiple linear regression after adjusting for age, gender, smoking habits, hypertension, type 2 diabetes, statin therapy, and HDL-C and TAG concentration (β coefficients -0.267; P < 0.05 and 0.368; P < 0.001, resp.). The results suggest that PON-1 activity and 8-iso-PGF2α concentration are associated with the presence and extent of coronary stenosis and may be considered additional markers of coronary artery disease.

Figures

Figure 1
Figure 1
PONase activity (a) and AREase activity (b) in patients with coronary artery disease (CAD+) and patients with negative result of coronary angiography (CAD−). Values are presented as medians (25–75th percentiles, 5–95th percentiles) and assessed using the Mann-Whitney U test.
Figure 2
Figure 2
PONase activity towards AREase activity: squares: PONase/AREase 4.0.
Figure 3
Figure 3
Plasma 8-iso-PGF2α concentrations in patients with coronary artery disease (CAD+) and patients with negative result of coronary angiography (CAD−). Values are presented as medians (25–75th percentiles, 5–95th percentiles) and assessed using the Mann-Whitney U test.
Figure 4
Figure 4
Correlations between Gensini score and (a) 8-iso-PGF2α concentrations, (b) PONase activity, and (c) AREase activity.

References

    1. Itabe H. Oxidative modification of LDL: its pathological role in atherosclerosis. Clinical Reviews in Allergy and Immunology. 2009;37(1):4–11. doi: 10.1007/s12016-008-8095-9.
    1. Gamkrelidze M., Mamamtavrishvili N., Bejitashvili N., Sanikidze T., Ratiani L. Role of oxidative stress in pathogenesis of atherosclerosis. Georgian Medical News. 2008;(163):54–57.
    1. Mehrabi M. R., Serbecic N., Ekmekcioglu C., et al. The isoprostane 8-epi-PGF(2alpha) is a valuable indicator of oxidative injury in human heart valves. Cardiovascular Pathology. 2001;10:241–245.
    1. Montuschi P., Barnes P., Roberts L. J., II Insights into oxidative stress: the isoprostanes. Current Medicinal Chemistry. 2007;14(6):703–717. doi: 10.2174/092986707780059607.
    1. Wilson S. H., Best P. J. M., Lerman L. O., Holmes D. R., Jr., Richardson D. M., Lerman A. Enhanced coronary vasoconstriction to oxidative stress product, 8-epi-prostaglandinF(2α), in experimental hypercholesterolemia. Cardiovascular Research. 1999;44(3):601–607. doi: 10.1016/s0008-6363(99)00225-4.
    1. Minuz P., Fava C., Lechi A. Lipid peroxidation, isoprostanes and vascular damage. Pharmacological Reports. 2006;58(supplement):57–68.
    1. Durrington P. N., Mackness B., Mackness M. I. Paraoxonase and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2001;21(4):473–480. doi: 10.1161/01.ATV.21.4.473.
    1. Litvinov D., Mahini H., Garelnabi M. Antioxidant and anti-inflammatory role of paraoxonase 1: implication in arteriosclerosis diseases. North American Journal of Medical Sciences. 2012;4(11):523–532. doi: 10.4103/1947-2714.103310.
    1. Rozenberg O., Rosenblat M., Coleman R., Shih D. M., Aviram M. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radical Biology & Medicine. 2003;34(6):774–784. doi: 10.1016/s0891-5849(02)01429-6.
    1. Shih D. M., Xia Y.-R., Wang X.-P., et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. Journal of Biological Chemistry. 2000;275(23):17527–17535. doi: 10.1074/jbc.m910376199.
    1. Ng D. S., Chu T., Esposito B., Hui P., Connelly P. W., Gross P. L. Paraoxonase-1 deficiency in mice predisposes to vascular inflammation, oxidative stress, and thrombogenicity in the absence of hyperlipidemia. Cardiovascular Pathology. 2008;17(4):226–232. doi: 10.1016/j.carpath.2007.10.001.
    1. Rozenberg O., Shih D. M., Aviram M. Human serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(3):461–467. doi: 10.1161/01.atv.0000060462.35946.b3.
    1. Rosenblat M., Vaya J., Shih D., Aviram M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. Atherosclerosis. 2005;179(1):69–77. doi: 10.1016/j.atherosclerosis.2004.10.028.
    1. Wang M., Lang X., Cui S., et al. Quantitative assessment of the influence of paraoxonase 1 activity and coronary heart disease risk. DNA and Cell Biology. 2012;31(6):975–982. doi: 10.1089/dna.2011.1478.
    1. Tang W. H. W., Hartiala J., Fan Y., et al. Clinical and genetic association of serum paraoxonase and arylesterase activities with cardiovascular risk. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(11):2803–2812. doi: 10.1161/atvbaha.112.253930.
    1. Sirivarasai J., Kaojarern S., Sura T., Yoovathaworn K. Biochemical, environmental, and genetic factors associated with paraoxonase (PON1) activity. Biochemical Genetics. 2011;49(5-6):364–368. doi: 10.1007/s10528-010-9413-5.
    1. Nakanishi M., Takanami Y., Maruyama T., et al. The ratio of serum paraoxonase/arylesterase activity using an improved assay for arylesterase activity to discriminate PON1(R192) from PON1(Q192) Journal of Atherosclerosis and Thrombosis. 2003;10(6):337–342. doi: 10.5551/jat.10.337.
    1. Rajkovic M. G., Rumora L., Barisic K. The paraoxonase 1, 2 and 3 in humans. Biochemia Medica. 2011;21(2):122–130.
    1. Gensini G. G., editor. Coronary Arteriography. New York, NY, USA: Futura Publishing Company; 1975.
    1. Bayrak A., Bayrak T., Tokgözoğlu S. L., et al. Serum PON-1 activity but not Q192R polymorphism is related to the extent of atherosclerosis. Journal of Atherosclerosis and Thrombosis. 2012;19(4):376–384. doi: 10.5551/jat.11320.
    1. Mackness B., Mackness M. I., Durrington P. N., et al. Paraoxonase activity in two healthy populations with differing rates of coronary heart disease. European Journal of Clinical Investigation. 2000;30(1):4–10. doi: 10.1046/j.1365-2362.2000.00580.x.
    1. Zhou C., Cao J., Shang L., et al. Reduced paraoxonase 1 activity as a marker for severe coronary artery disease. Disease Markers. 2013;35(2):97–103. doi: 10.1155/2013/816189.
    1. Granér M., James R. W., Kahri J., Nieminen M. S., Syvänne M., Taskinen M.-R. Association of paraoxonase-1 activity and concentration with angiographic severity and extent of coronary artery disease. Journal of the American College of Cardiology. 2006;47(12):2429–2435. doi: 10.1016/j.jacc.2006.01.074.
    1. Bhattacharyya T., Nicholls S. J., Topol E. J., et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. Journal of the American Medical Association. 2008;299(11):1265–1276. doi: 10.1001/jama.299.11.1265.
    1. Gupta N., Singh S., Maturu V. N., Sharma Y. P., Gill K. D. Paraoxonase 1 (PON1) polymorphisms, haplotypes and activity in predicting CAD risk in North-West Indian Punjabis. PLoS ONE. 2011;6(5) doi: 10.1371/journal.pone.0017805.e17805
    1. Mackness B., Davies G. K., Turkie W., et al. Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arteriosclerosis, Thrombosis, and Vascular Biology. 2001;21(9):1451–1457. doi: 10.1161/hq0901.094247.
    1. Patrono C., Falco A., Davì G. Isoprostane formation and inhibition in atherothrombosis. Current Opinion in Pharmacology. 2005;5(2):198–203. doi: 10.1016/j.coph.2004.11.003.
    1. Wang B., Pan J., Wang L., Zhu H., Yu R., Zou Y. Associations of plasma 8-isoprostane levels with the presence and extent of coronary stenosis in patients with coronary artery disease. Atherosclerosis. 2006;184(2):425–430. doi: 10.1016/j.atherosclerosis.2005.05.008.
    1. Morrow J. D. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(2):279–286. doi: 10.1161/01.atv.0000152605.64964.c0.
    1. Gross M., Steffes M., Jacobs D. R., Jr., et al. Plasma F2-isoprostanes and coronary artery calcification: the CARDIA study. Clinical Chemistry. 2005;51(1):125–131. doi: 10.1373/clinchem.2004.037630.
    1. Clejan S., Japa S., Clemetson C., Hasabnis S. S., David O., Talano J. V. Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. Journal of Cellular and Molecular Medicine. 2002;6(4):583–592. doi: 10.1111/j.1582-4934.2002.tb00456.x.
    1. Vassalle C., Botto N., Andreassi M. G., Berti S., Biagini A. Evidence for enhanced 8-isoprostane plasma levels, as index of oxidative stress in vivo, in patients with coronary artery disease. Coronary Artery Disease. 2003;14(3):213–218. doi: 10.1097/00019501-200305000-00004.
    1. Vassalle C., Petrozzi L., Botto N., Andreassi M. G., Zucchelli G. C. Oxidative stress and its association with coronary artery disease and different atherogenic risk factors. Journal of Internal Medicine. 2004;256(4):308–315. doi: 10.1111/j.1365-2796.2004.01373.x.
    1. James R. W., Leviev I., Righetti A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation. 2000;101(19):2252–2257. doi: 10.1161/01.CIR.101.19.2252.
    1. Costa L. G., Vitalone A., Cole T. B., Furlong C. E. Modulation of paraoxonase (PON1) activity. Biochemical Pharmacology. 2005;69(4):541–550. doi: 10.1016/j.bcp.2004.08.027.
    1. Proudfoot J. M., Barden A. E., Loke W. M., Croft K. D., Puddey I. B., Mori T. A. HDL is the major lipoprotein carrier of plasma F2-isoprostanes. Journal of Lipid Research. 2009;50(4):716–722. doi: 10.1194/jlr.M800607-JLR200.
    1. Chapman M. J., Ginsberg H. N., Amarenco P., et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. European Heart Journal. 2011;32(11):1345–1361. doi: 10.1093/eurheartj/ehr112.
    1. Pirillo A., Norata G. D., Catapano A. L. Treating high density lipoprotein cholesterol (HDL-C): quantity versus quality. Current Pharmaceutical Design. 2013;19(21):3841–3857. doi: 10.2174/13816128113199990298.
    1. Tsompanidi E. M., Brinkmeier M. S., Fotiadou E. H., Giakoumi S. M., Kypreos K. E. HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis. 2010;208(1):3–9. doi: 10.1016/j.atherosclerosis.2009.05.034.
    1. Mirdamadi H. Z., Sztanek F., Derdak Z., Seres I., Harangi M., Paragh G. The human paraoxonase-1 phenotype modifies the effect of statins on paraoxonase activity and lipid parameters. British Journal of Clinical Pharmacology. 2008;66(3):366–374. doi: 10.1111/j.1365-2125.2008.03213.x.

Source: PubMed

3
Subskrybuj