Acute and Chronic Effects of Exercise on Appetite, Energy Intake, and Appetite-Related Hormones: The Modulating Effect of Adiposity, Sex, and Habitual Physical Activity

James Dorling, David R Broom, Stephen F Burns, David J Clayton, Kevin Deighton, Lewis J James, James A King, Masashi Miyashita, Alice E Thackray, Rachel L Batterham, David J Stensel, James Dorling, David R Broom, Stephen F Burns, David J Clayton, Kevin Deighton, Lewis J James, James A King, Masashi Miyashita, Alice E Thackray, Rachel L Batterham, David J Stensel

Abstract

Exercise facilitates weight control, partly through effects on appetite regulation. Single bouts of exercise induce a short-term energy deficit without stimulating compensatory effects on appetite, whilst limited evidence suggests that exercise training may modify subjective and homeostatic mediators of appetite in directions associated with enhanced meal-induced satiety. However, a large variability in responses exists between individuals. This article reviews the evidence relating to how adiposity, sex, and habitual physical activity modulate exercise-induced appetite, energy intake, and appetite-related hormone responses. The balance of evidence suggests that adiposity and sex do not modify appetite or energy intake responses to acute or chronic exercise interventions, but individuals with higher habitual physical activity levels may better adjust energy intake in response to energy balance perturbations. The effect of these individual characteristics and behaviours on appetite-related hormone responses to exercise remains equivocal. These findings support the continued promotion of exercise as a strategy for inducing short-term energy deficits irrespective of adiposity and sex, as well as the ability of exercise to positively influence energy balance over the longer term. Future well-controlled studies are required to further ascertain the potential mediators of appetite responses to exercise.

Keywords: appetite; appetite-related hormones; energy balance; energy compensation; energy intake; exercise; physical activity; weight control.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overall appetite perceptions in individuals who were lean (n = 22; left panel) and those with overweight/obesity (n = 25; right panel) during the control (■) and exercise (○) trials. Exercise involved 60 min treadmill exercise at a 59% peak oxygen uptake. Data are mean ± SEM. A grey rectangle indicates exercise, open rectangles indicate standardized meals and black rectangle indicates an ad libitum buffet meal. Data from Douglas et al. [33]. © Springer Nature. Reproduced through Creative Commons licence.
Figure 2
Figure 2
Absolute energy intake at an ad libitum buffet meal in the control, moderate-intensity, high-intensity intermittent and sprint interval cycling trials in 11 men and nine women. Data are mean ± SEM. * Significant difference between men and women. Data from Panissa et al. [87]. © RightsLink. Reproduced with permission.

References

    1. Di Cesare M., Bentham J., Stevens G.A., Zhou B., Danaei G., Lu Y., Bixby H., Cowan M.J., Riley L.M., Hajifathalian K., et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–1396.
    1. Heymsfield S.B., Wadden T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017;376:254–266. doi: 10.1056/NEJMra1514009.
    1. Wang Y.C., McPherson K., Marsh T., Gortmaker S.L., Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378:815–825. doi: 10.1016/S0140-6736(11)60814-3.
    1. Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011;43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Kohrt W.M., Bloomfield S.A., Little K.D., Nelson M.E., Yingling V.R. American College of Sports Medicine Position Stand: Physical activity and bone health. Med. Sci. Sports Exerc. 2004;36:1985–1996. doi: 10.1249/01.MSS.0000142662.21767.58.
    1. Schuch F.B., Vancampfort D., Richards J., Rosenbaum S., Ward P.B., Stubbs B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J. Psychiatr. Res. 2016;77:42–51. doi: 10.1016/j.jpsychires.2016.02.023.
    1. Donnelly J.E., Blair S.N., Jakicic J.M., Manore M.M., Rankin J.W., Smith B.K. American college of sports medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sport. Exerc. 2009;41:459–471. doi: 10.1249/MSS.0b013e3181949333.
    1. Bouchard C., Tremblay A., Després J.P.P., Thériault G., Nadeauf A., Lupien P.J., Moorjani S., Prudhomme D., Fournier G. The response to exercise with constant energy intake in identical twins. Obes. Res. 1994;2:400–410. doi: 10.1002/j.1550-8528.1994.tb00087.x.
    1. King N.A., Hopkins M., Caudwell P., Stubbs R.J., Blundell J.E. Individual variability following 12 weeks of supervised exercise: Identification and characterization of compensation for exercise-induced weight loss. Int. J. Obes. 2008;32:177–184. doi: 10.1038/sj.ijo.0803712.
    1. Mayer J., Roy P., Mitra K.P. Relation between caloric intake, body weight, and physical work: Studies in an industrial male population in West Bengal. Am. J. Clin. Nutr. 1956;4:169–175. doi: 10.1093/ajcn/4.2.169.
    1. Blundell J.E., Caudwell P., Gibbons C., Hopkins M., Naslund E., King N., Finlayson G. Role of resting metabolic rate and energy expenditure in hunger and appetite control: A new formulation. Dis. Model. Mech. 2012;5:608–613. doi: 10.1242/dmm.009837.
    1. Caudwell P., Finlayson G., Gibbons C., Hopkins M., King N., Näslund E., Blundell J.E. Resting metabolic rate is associated with hunger, self-determined meal size, and daily energy intake and may represent a marker for appetite. Am. J. Clin. Nutr. 2013;97:7–14. doi: 10.3945/ajcn.111.029975.
    1. King J.A., Deighton K., Broom D.R., Wasse L.K., Douglas J.A., Burns S.F., Cordery P.A., Petherick E.S., Batterham R.L., Goltz F.R., et al. Individual variation in hunger, energy intake, and ghrelin responses to acute exercise. Med. Sci. Sports Exerc. 2017;49:1219–1228. doi: 10.1249/MSS.0000000000001220.
    1. Blundell J., De Graaf C., Hulshof T., Jebb S., Livingstone B., Lluch A., Mela D., Salah S., Schuring E., Van Der Knaap H., et al. Appetite control: Methodological aspects of the evaluation of foods. Obes. Rev. 2010;11:251–270. doi: 10.1111/j.1467-789X.2010.00714.x.
    1. Beaulieu K., Hopkins M., Blundell J.E., Finlayson G. Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. Physiol. Behav. 2017 doi: 10.1016/j.physbeh.2017.12.032. in press.
    1. King J.A., Wasse L.K., Stensel D.J., Nimmo M.A. Exercise and ghrelin. A narrative overview of research. Appetite. 2013;68:83–91. doi: 10.1016/j.appet.2013.04.018.
    1. Manning S., Batterham R.L. The role of gut hormone peptide YY in energy and glucose homeostasis: Twelve years on. Annu. Rev. Physiol. 2014;76:585–608. doi: 10.1146/annurev-physiol-021113-170404.
    1. Beaulieu K., Hopkins M., Blundell J., Finlayson G. Does habitual physical activity increase the sensitivity of the appetite control system? A systematic review. Sports Med. 2016;46:1897–1919. doi: 10.1007/s40279-016-0518-9.
    1. Deighton K., Stensel D.J. Creating an acute energy deficit without stimulating compensatory increases in appetite: Is there an optimal exercise protocol? Proc. Nutr. Soc. 2014;73:352–358. doi: 10.1017/S002966511400007X.
    1. King N.A., Burley V.J., Blundell J.E. Exercise-induced suppression of appetite: Effects on food intake and implications for energy balance. Eur. J. Clin. Nutr. 1994;48:715–724.
    1. King J.A., Wasse L.K., Ewens J., Crystallis K., Emmanuel J., Batterham R.L., Stensel D.J. Differential acylated ghrelin, peptide YY3-36, appetite, and food intake responses to equivalent energy deficits created by exercise and food restriction. J. Clin. Endocrinol. MeTable. 2011;96:1114–1121. doi: 10.1210/jc.2010-2735.
    1. King J.A., Miyashita M., Wasse L.K., Stensel D.J. Influence of prolonged treadmill running on appetite, energy intake and circulating concentrations of acylated ghrelin. Appetite. 2010;54:492–498. doi: 10.1016/j.appet.2010.02.002.
    1. Broom D.R., Stensel D.J., Bishop N.C., Burns S.F., Miyashita M. Exercise-induced suppression of acylated ghrelin in humans. J. Appl. Physiol. 2007;102:2165–2171. doi: 10.1152/japplphysiol.00759.2006.
    1. Deighton K., Barry R., Connon C.E., Stensel D.J. Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise. Eur. J. Appl. Physiol. 2013;113:1147–1156. doi: 10.1007/s00421-012-2535-1.
    1. Broom D.R., Batterham R.L., King J.A., Stensel D.J. Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;296:R29–R35. doi: 10.1152/ajpregu.90706.2008.
    1. Laan D.J., Leidy H.J., Lim E., Campbell W.W. Effects and reproducibility of aerobic and resistance exercise on appetite and energy intake in young, physically active adults. Appl. Physiol. Nutr. Metab. 2010;35:842–847. doi: 10.1139/H10-072.
    1. Larsen P.S., Donges C.E., Guelfi K.J., Smith G.C., Adams D.R., Duffield R. Effects of aerobic, strength or combined exercise on perceived appetite and appetite-related hormones in inactive middle-aged men. Int. J. Sport Nutr. Exerc. Metab. 2017;27:389–398. doi: 10.1123/ijsnem.2017-0144.
    1. Ballard T.P., Melby C.L., Camus H., Cianciulli M., Pitts J., Schmidt S., Hickey M.S. Effect of resistance exercise, with or without carbohydrate supplementation, on plasma ghrelin concentrations and postexercise hunger and food intake. Metabolism. 2009;58:1191–1199. doi: 10.1016/j.metabol.2009.03.018.
    1. Martins C., Morgan L.M., Bloom S.R., Robertson M.D. Effects of exercise on gut peptides, energy intake and appetite. J. Endocrinol. 2007;193:251–258. doi: 10.1677/JOE-06-0030.
    1. Ueda S.Y., Yoshikawa T., Katsura Y., Usui T., Nakao H., Fujimoto S. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J. Endocrinol. 2009;201:151–159. doi: 10.1677/JOE-08-0500.
    1. King N.A., Lluch A., Stubbs R.J., Blundell J.E. High dose exercise does not increase hunger or energy intake in free living males. Eur. J. Clin. Nutr. 1997;51:478–483. doi: 10.1038/sj.ejcn.1600432.
    1. King J.A., Garnham J.O., Jackson A.P., Kelly B.M., Xenophontos S., Nimmo M.A. Appetite-regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise. Physiol. Behav. 2015;141:23–31. doi: 10.1016/j.physbeh.2014.12.050.
    1. Douglas J.A., King J.A., Clayton D.J., Jackson A.P., Sargeant J.A., Thackray A.E., Davies M.J., Stensel D.J. Acute effects of exercise on appetite, ad libitum energy intake and appetite-regulatory hormones in lean and overweight/obese men and women. Int. J. Obes. 2017;41:1737–1744. doi: 10.1038/ijo.2017.181.
    1. Alajmi N., Deighton K., King J.A., Reischak-Oliveira A., Wasse L.K., Jones J., Batterham R.L., Stensel D.J. Appetite and energy intake responses to acute energy deficits in females versus males. Med. Sci. Sports Exerc. 2016;48:412–420. doi: 10.1249/MSS.0000000000000793.
    1. King J.A., Wasse L.K., Broom D.R., Stensel D.J. Influence of brisk walking on appetite, energy intake, and plasma acylated ghrelin. Med. Sci. Sports Exerc. 2010;42:485–492. doi: 10.1249/MSS.0b013e3181ba10c4.
    1. Balaguera-Cortes L., Wallman K.E., Fairchild T.J., Guelfi K.J. Energy intake and appetite-related hormones following acute aerobic and resistance exercise. Appl. Physiol. Nutr. Metab. 2011;36:958–966. doi: 10.1139/h11-121.
    1. Jokisch E., Coletta A., Raynor H.A. Acute energy compensation and macronutrient intake following exercise in active and inactive males who are normal weight. Appetite. 2012;58:722–729. doi: 10.1016/j.appet.2011.11.024.
    1. Cadieux S., McNeil J., Lapierre M.P., Riou M.È., Doucet É. Resistance and aerobic exercises do not affect post-exercise energy compensation in normal weight men and women. Physiol. Behav. 2014;130:113–119. doi: 10.1016/j.physbeh.2014.03.031.
    1. Murphy K.G., Bloom S.R. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444:854–859. doi: 10.1038/nature05484.
    1. Sliwowski Z., Lorens K., Konturek S.J., Bielanski W., Zoladz J.A. Leptin, gastrointestinal and stress hormones in response to exercise in fasted or fed subjects and before or after blood donation. J. Physiol. Pharmacol. 2001;52:53–70.
    1. Ueda S.Y., Yoshikawa T., Katsura Y., Usui T., Fujimoto S. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J. Endocrinol. 2009;203:357–364. doi: 10.1677/JOE-09-0190.
    1. Kawano H., Mineta M., Asaka M., Miyashita M., Numao S., Gando Y., Ando T., Sakamoto S., Higuchi M. Effects of different modes of exercise on appetite and appetite-regulating hormones. Appetite. 2013;66:26–33. doi: 10.1016/j.appet.2013.01.017.
    1. King N.A., Caudwell P.P., Hopkins M., Stubbs J.R., Naslund E., Blundell J.E. Dual-process action of exercise on appetite control: Increase in orexigenic drive but improvement in meal-induced satiety. Am. J. Clin. Nutr. 2009;90:921–927. doi: 10.3945/ajcn.2009.27706.
    1. Caudwell P., Gibbons C., Hopkins M., King N., Finlayson G., Blundell J. No sex difference in body fat in response to supervised and measured exercise. Med. Sci. Sports Exerc. 2013;45:351–358. doi: 10.1249/MSS.0b013e31826ced79.
    1. Martins C., Kulseng B., King N.A., Holst J.J., Blundell J.E. The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat. J. Clin. Endocrinol. Metab. 2010;95:1609–1616. doi: 10.1210/jc.2009-2082.
    1. Martins C., Kulseng B., Rehfeld J.F., King N.A., Blundell J.E. Effect of chronic exercise on appetite control in overweight and obese individuals. Med. Sci. Sports Exerc. 2013;45:805–812. doi: 10.1249/MSS.0b013e31827d1618.
    1. Morishima T., Kurihara T., Hamaoka T., Goto K. Whole body, regional fat accumulation, and appetite-related hormonal response after hypoxic training. Clin. Physiol. Funct. Imaging. 2014;34:90–97. doi: 10.1111/cpf.12069.
    1. Martins C., Truby H., Morgan L.M. Short-term appetite control in response to a 6-week exercise programme in sedentary volunteers. Br. J. Nutr. 2007;98:834–842. doi: 10.1017/S000711450774922X.
    1. Guelfi K.J., Donges C.E., Duffield R. Beneficial effects of 12 weeks of aerobic compared with resistance exercise training on perceived appetite in previously sedentary overweight and obese men. Metabolism. 2013;62:235–243. doi: 10.1016/j.metabol.2012.08.002.
    1. Rosenkilde M., Reichkendler M.H., Auerbach P., Torang S., Gram A.S., Ploug T., Holst J.J., Sjodin A., Stallknecht B. Appetite regulation in overweight, sedentary men after different amounts of endurance exercise: A randomized controlled trial. J. Appl. Physiol. 2013;115:1599–1609. doi: 10.1152/japplphysiol.00680.2013.
    1. Bryant E.J., Caudwell P., Hopkins M.E., King N.A., Blundell J.E. Psycho-markers of weight loss. The roles of TFEQ disinhibition and restraint in exercise-induced weight management. Appetite. 2012;58:234–241. doi: 10.1016/j.appet.2011.09.006.
    1. Cornier M.A., Melanson E.L., Salzberg A.K., Bechtell J.L., Tregellas J.R. The effects of exercise on the neuronal response to food cues. Physiol. Behav. 2012;105:1028–1034. doi: 10.1016/j.physbeh.2011.11.023.
    1. Pil-Byung C., Shin-Hwan Y., Il-Gyu K., Gwang-Suk H., Jae-Hyun Y., Han-Joon L., Sung-Eun K., Yong-Seok Korea J. Effects of exercise program on appetite-regulating hormones, inflammatory mediators, lipid profiles, and body composition in healthy men. J. Sports Med. Phys. Fitness. 2011;51:654–663.
    1. Kanaley J.A., Heden T.D., Liu Y., Whaley-Connell A.T., Chockalingam A., Dellsperger K.C., Fairchild T.J. Short-term aerobic exercise training increases postprandial pancreatic polypeptide but not peptide YY concentrations in obese individuals. Int. J. Obes. 2014;38:266–271. doi: 10.1038/ijo.2013.84.
    1. Li S., Chen W., Sun D., Fernandez C., Li J., Kelly T., He J., Krousel-Wood M., Whelton P.K. Variability and rapid increase in body mass index during childhood are associated with adult obesity. Int. J. Epidemiol. 2015;44:1943–1950. doi: 10.1093/ije/dyv202.
    1. Karra E., Batterham R.L. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol. Cell. Endocrinol. 2010;316:120–128. doi: 10.1016/j.mce.2009.06.010.
    1. Considine R.V., Sinha M.K., Heiman M.L., Kriauciunas A., Stephens T.W., Nyce M.R., Ohannesian J.P., Marco C.C., McKee L.J., Bauer T.L., et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996;334:292–295. doi: 10.1056/NEJM199602013340503.
    1. Coutinho S.R., Rehfeld J.F., Holst J.J., Kulseng B., Martins C. Impact of weight loss achieved through a multidisciplinary intervention on appetite in patients with severe obesity. Am. J. Physiol. Endocrinol. Metab. 2018 doi: 10.1152/ajpendo.00322.2017. in press.
    1. Bagdade J.D., Bierman E.L., Porte D.J. The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J. Clin. Investig. 1967;46:1549–1557. doi: 10.1172/JCI105646.
    1. Holmstrup M.E., Fairchild T.J., Keslacy S., Weinstock R.S., Kanaley J.A. Satiety, but not total PYY, is increased with continuous and intermittent exercise. Obesity. 2013;21:2014–2020. doi: 10.1002/oby.20335.
    1. Holliday A., Blannin A.K. Very low volume sprint interval exercise suppresses subjective appetite, lowers acylated ghrelin, and elevates GLP-1 in overweight individuals: A pilot study. Nutrients. 2017;9:362. doi: 10.3390/nu9040362.
    1. Sim A.Y., Wallman K.E., Fairchild T.J., Guelfi K.J. High-intensity intermittent exercise attenuates ad-libitum energy intake. Int. J. Obes. 2014;38:417–422. doi: 10.1038/ijo.2013.102.
    1. Martins C., Stensvold D., Finlayson G., Holst J., Wisloff U., Kulseng B., Morgan L., King N.A. Effect of moderate- and high-intensity acute exercise on appetite in obese individuals. Med. Sci. Sports Exerc. 2015;47:40–48. doi: 10.1249/MSS.0000000000000372.
    1. Unick J.L., Otto A.D., Goodpaster B.H., Helsel D.L., Pellegrini C.A., Jakicic J.M. Acute effect of walking on energy intake in overweight/obese women. Appetite. 2010;55:413–419. doi: 10.1016/j.appet.2010.07.012.
    1. Tsofliou F., Pitsiladis Y.P., Malkova D., Wallace A.M., Lean M.E.J. Moderate physical activity permits acute coupling between serum leptin and appetite-satiety measures in obese women. Int. J. Obes. Relat. Metab. Disord. 2003;27:1332–1339. doi: 10.1038/sj.ijo.0802406.
    1. Deighton K., Karra E., Batterham R.L., Stensel D.J. Appetite, energy intake, and PYY3-36 responses to energy-matched continuous exercise and submaximal high-intensity exercise. Appl. Physiol. Nutr. Metab. 2013;38:947–952. doi: 10.1139/apnm-2012-0484.
    1. Kissileff H.R., Pi-Sunyer F.X., Segal K., Meltzer S., Foelsch P.A. Acute effects of exercise on food intake in obese and nonobese women. Am. J. Clin. Nutr. 1990;52:240–245. doi: 10.1093/ajcn/52.2.240.
    1. Marzullo P., Salvadori A., Brunani A., Verti B., Walker G.E., Fanari P., Tovaglieri I., Medici C.D., Savia G., Liuzzi A. Acylated ghrelin decreases during acute exercise in the lean and obese state. Clin. Endocrinol. (Oxf.) 2008;69:970–971. doi: 10.1111/j.1365-2265.2008.03275.x.
    1. Mihalache L., Gherasim A., Niță O., Ungureanu M.C., Pădureanu S.S., Gavril R.S., Arhire L.I. Effects of ghrelin in energy balance and body weight homeostasis. Hormones. 2016;15:186–196. doi: 10.14310/horm.2002.1672.
    1. Stock S., Leichner P., Wong A.C.K., Ghatei M.A., Kieffer T.J., Bloom S.R., Chanoine J.P. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J. Clin. Endocrinol. Metab. 2005;90:2161–2168. doi: 10.1210/jc.2004-1251.
    1. Martins C., Aschehoug I., Ludviksen M., Holst J., Finlayson G., Wisloff U., Morgan L., King N., Kulseng B. High-intensity interval training, appetite, and reward value of food in the obese. Med. Sci. Sport Exerc. 2017;49:1851–1858. doi: 10.1249/MSS.0000000000001296.
    1. Hosoda H., Kojima M., Mizushima T., Shimizu S., Kangawa K. Structural divergence of human ghrelin: Identification of multiple ghrelin-derived molecules produced by post-translational processing. J. Biol. Chem. 2003;278:64–70. doi: 10.1074/jbc.M205366200.
    1. Gibbons C., Blundell J.E., Caudwell P., Webb D.L., Hellström P.M., Näslund E., Finlayson G. The Role of Episodic Postprandial Peptides in Exercise-Induced Compensatory Eating. J. Clin. Endocrinol. Metab. 2017;102:4051–4059. doi: 10.1210/jc.2017-00817.
    1. Ramel A., Halldorsson T.I., Tryggvadottir E.A., Martinez J.A., Kiely M., Bandarra N.M., Thorsdottir I. Relationship between BMI and body fatness in three European countries. Eur. J. Clin. Nutr. 2013;67:254–258. doi: 10.1038/ejcn.2013.6.
    1. Sondergaard E., Gormsen L.C., Nellemann B., Vestergaard E.T., Christiansen J.S., Nielsen S. Visceral fat mass is a strong predictor of circulating ghrelin levels in premenopausal women. Eur. J. Endocrinol. 2009;160:375–379. doi: 10.1530/EJE-08-0735.
    1. Brennan I.M., Feltrin K.L., Nair N.S., Hausken T., Little T.J., Gentilcore D., Wishart J.M., Jones K.L., Horowitz M., Feinle-Bisset C. Effects of the phases of the menstrual cycle on gastric emptying, glycemia, plasma GLP-1 and insulin, and energy intake in healthy lean women. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297:G602–G610. doi: 10.1152/ajpgi.00051.2009.
    1. Lissner L., Stevens J., Levitsky D.A., Rasmussen K.M., Strupp B.J. Variation in energy intake during the menstrual cycle: Implications for food-intake research. Am. J. Clin. Nutr. 1988;48:956–962. doi: 10.1093/ajcn/48.4.956.
    1. Wade G.N., Jones J.E. Neuroendocrinology of nutritional infertility. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287:R1277–R1296. doi: 10.1152/ajpregu.00475.2004.
    1. Thackray A.E., Deighton K., King J.A., Stensel D.J. Exercise, appetite and weight control: Are there differences between men and women? Nutrients. 2016;8:583. doi: 10.3390/nu8090583.
    1. Reger W.E., Allison T.A., Kurucz R.L. Exercise, postexercise metabolic rate and appetite. Sport Heal. Nutr. 1986;2:117–123.
    1. Howe S.M., Hand T.M., Larson-Meyer D.E., Austin K.J., Alexander B.M., Manore M.M. No effect of exercise intensity on appetite in highly-trained endurance women. Nutrients. 2016;8:223. doi: 10.3390/nu8040223.
    1. Tiryaki-Sonmez G., Ozen S., Bugdayci G., Karli U., Ozen G., Cogalgil S., Schoenfeld B., Sozbir K., Aydin K. Effect of exercise on appetite-regulating hormones in overweight women. Biol. Sport. 2013;30:75–80. doi: 10.5604/20831862.1044220.
    1. Hazell T.J., Townsend L.K., Hallworth J.R., Doan J., Copeland J.L. Sex differences in the response of total PYY and GLP-1 to moderate-intensity continuous and sprint interval cycling exercise. Eur. J. Appl. Physiol. 2017;117:431–440. doi: 10.1007/s00421-017-3547-7.
    1. King N.A., Snell L., Smith R.D., Blundell J.E. Effects of short-term exercise on appetite responses in unrestrained females. Eur. J. Cin. Nutr. 1996;50:663–667.
    1. Hallworth J.R., Copeland J.L., Doan J., Hazell T.J. The effect of exercise intensity on total PYY and GLP-1 in healthy females: A pilot study. J. Nutr. Metab. 2017;2017:4823102. doi: 10.1155/2017/4823102.
    1. Larson-Meyer D.E., Palm S., Bansal A., Austin K.J., Hart A.M., Alexander B.M. Influence of running and walking on hormonal regulators of appetite in women. J. Obes. 2012;2012:730409. doi: 10.1155/2012/730409.
    1. Panissa V.L.G., Julio U.F., Hardt F., Kurashima C., Lira F.S., Takito M.Y., Franchini E. Effect of exercise intensity and mode on acute appetite control in men and women. Appl. Physiol. Nutr. Metab. 2016;41:1083–1091. doi: 10.1139/apnm-2016-0172.
    1. Hagobian T., Yamashiro M., Hinkel-Lipsker J., Streder K., Evero N., Hackney T. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women. Appl. Physiol. Nutr. Metab. 2013;38:66–72. doi: 10.1139/apnm-2012-0104.
    1. Shamlan G., Bech P., Robertson M.D., Collins A.L. Acute effects of exercise intensity on subsequent substrate utilisation, appetite and energy balance in men and women. Appl. Physiol. Nutr. Metab. 2017;42:1247–1253. doi: 10.1139/apnm-2017-0280.
    1. Chandarana K., Drew M.E., Emmanuel J., Karra E., Gelegen C., Chan P., Cron N.J., Batterham R.L. Subject standardization, acclimatization, and sample processing affect gut hormone levels and appetite in humans. Gastroenterology. 2009;136:2115–2126. doi: 10.1053/j.gastro.2009.02.047.
    1. Hagobian T.A., Sharoff C.G., Stephens B.R., Wade G.N., Silva J.E., Chipkin S.R., Braun B. Effects of exercise on energy-regulating hormones and appetite in men and women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;296:R233–R242. doi: 10.1152/ajpregu.90671.2008.
    1. Stubbs R.J., Sepp A., Hughes D.A., Johnstone A.M., Horgan G., King N., Blundell J.E. The effect of graded levels of exercise on energy intake and balance in free-living women. Int. J. Obes. Relat. Metab. Disord. 2002;26:866–869. doi: 10.1038/sj.ijo.0801874.
    1. Stubbs R., Sepp A., Hughes D., Johnstone A., King N., Horgan G., Blundell J. The effect of graded levels of exercise on energy intake and balance in free-living men, consuming their normal diet. Eur. J. Clin. Nutr. 2002;56:129–140. doi: 10.1038/sj.ejcn.1601295.
    1. Whybrow S., Hughes D.A., Ritz P., Johnstone A.M., Horgan G.W., King N., Blundell J.E., Stubbs R.J. The effect of an incremental increase in exercise on appetite, eating behaviour and energy balance in lean men and women feeding ad libitum. Br. J. Nutr. 2008;100:1109–1115. doi: 10.1017/S0007114508968240.
    1. Church T.S., Martin C.K., Thompson A.M., Earnest C.P., Mikus C.R., Blair S.N. Changes in weight, waist circumference and compensatory responses with different doses of exercise among sedentary, coverweight postmenopausal women. PLoS ONE. 2009;4:e4515. doi: 10.1371/journal.pone.0004515.
    1. Turner J.E., Markovitch D., Betts J.A., Thompson D. Nonprescribed physical activity energy expenditure is maintained with structured exercise and implicates a compensatory increase in energy intake. Am. J. Clin. Nutr. 2010;92:1009–1016. doi: 10.3945/ajcn.2010.29471.
    1. Hickey M.S., Houmard J.A., Considine R.V., Tyndall G.L., Midgette J.B., Gavigan K.E., Weidner M.L., McCammon M.R., Israel R.G., Caro J.F. Gender-dependent effects of exercise training on serum leptin levels in humans. Am. J. Physiol. 1997;272:E562–E566. doi: 10.1152/ajpendo.1997.272.4.E562.
    1. Haskell W.L., Lee I.M., Pate R.R., Powell K.E., Blair S.N., Franklin B.A., MacEra C.A., Heath G.W., Thompson P.D., Bauman A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007;39:1423–1434. doi: 10.1249/mss.0b013e3180616b27.
    1. Blundell J.E., Gibbons C., Caudwell P., Finlayson G., Hopkins M. Appetite control and energy balance: Impact of exercise. Obes. Rev. 2015;16:67–76. doi: 10.1111/obr.12257.
    1. Kojima C., Ishibashi A., Ebi K., Goto K. The effect of a 20 km run on appetite regulation in long distance runners. Nutrients. 2016;8:672. doi: 10.3390/nu8110672.
    1. Finlayson G., Bryant E., Blundell J.E., King N.A. Acute compensatory eating following exercise is associated with implicit hedonic wanting for food. Physiol. Behav. 2009;97:62–67. doi: 10.1016/j.physbeh.2009.02.002.
    1. Hopkins M., Blundell J.E., King N.A. Individual variability in compensatory eating following acute exercise in overweight and obese women. Br. J. Sports Med. 2013;48:1472–1476. doi: 10.1136/bjsports-2012-091721.
    1. Brooks G.A., Mercier J. Balance of carbohydrate and lipid utilization during exercise: The “crossover” concept. J. Appl. Physiol. 1994;76:2253–2261. doi: 10.1152/jappl.1994.76.6.2253.
    1. Trudeau E., Kristal A.R., Li S., Patterson R.E. Demographic and Psychosocial Predictors of Fruit and Vegetable Intakes Differ. J. Am. Diet. Assoc. 1998;98:1412–1417. doi: 10.1016/S0002-8223(98)00319-8.
    1. Ayala G.X., Ornelas I., Rhodes S.D., Amell J.W., Dodds J.M., Mebane E., Horton E., Montano J., Armstrong-Brown J., Eng E. Correlates of dietary intake among men involved in the MAN for health study. Am. J. Men Health. 2009;3:201–213. doi: 10.1177/1557988308317138.
    1. Salmon J., Owen N., Crawford D., Bauman A., Sallis J.F. Physical activity and sedentary behavior: A population-based study of barriers, enjoyment, and preference. Health Psychol. 2003;22:178–188. doi: 10.1037/0278-6133.22.2.178.
    1. Blundell J.E., King N.A. Effects of exercise on appetite control: Loose coupling between energy expenditure and energy intake. Int. J. Obes. 1998;22:22–29.
    1. Charlot K., Chapelot D. Energy compensation after an aerobic exercise session in high-fat/low-fit and low-fat/high-fit young male subjects. Br. J. Nutr. 2013;110:1133–1142. doi: 10.1017/S0007114513000044.
    1. Rocha J., Paxman J., Dalton C., Winter E., Broom D. Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive pre-menopausal women taking oral contraceptives. Appetite. 2015;89:183–191. doi: 10.1016/j.appet.2015.02.005.
    1. Rocha J., Paxman J.R., Dalton C.F., Hopkins M., Broom D.R. An acute bout of cycling does not induce compensatory responses in pre- menopausal women not using hormonal contraceptives. Appetite. 2018;128:87–94. doi: 10.1016/j.appet.2018.05.143.
    1. Rocha J., Paxman J., Dalton C., Winter E., Broom D. Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive men. Appetite. 2013;71:369–378. doi: 10.1016/j.appet.2013.09.009.
    1. Dhurandhar N.V., Schoeller D., Brown A.W., Heymsfield S.B., Thomas D., Sørensen T.I.A., Speakman J.R., Jeansonne M., Allison D.B. Energy Balance Measurement Working Group Energy balance measurement: When something is not better than nothing. Int. J. Obes. 2015;39:1109–1113. doi: 10.1038/ijo.2014.199.
    1. Gregersen N.T., Moller B.K., Raben A., Kristensen S.T., Holm L., Flint A., Astrup A. Determinants of appetite ratings: The role of age, gender, BMI, physical activity, smoking habits, and diet/weight concern. Food Nutr. Res. 2011;55 doi: 10.3402/fnr.v55i0.7028.
    1. Van Walleghen E.L., Orr J.S., Gentile C.L., Davy K.P., Davy B.M. Habitual physical activity differentially affects acute and short-term energy intake regulation in young and older adults. Int. J. Obes. (Lond.) 2007;31:1277–1285. doi: 10.1038/sj.ijo.0803579.
    1. Long S.J., Hart K., Morgan L.M. The ability of habitual exercise to influence appetite and food intake in response to high- and low-energy preloads in man. Br. J. Nutr. 2002;87:517–523. doi: 10.1079/BJN2002560.
    1. Beaulieu K., Hopkins M., Long C., Blundell J., Finlayson G. High habitual physical activity improves acute energy compensation in nonobese adults. Med. Sci. Sports Exerc. 2017;49:2268–2275. doi: 10.1249/MSS.0000000000001368.
    1. Lund M.T., Taudorf L., Hartmann B., Helge J.W., Holst J.J., Dela F. Meal induced gut hormone secretion is altered in aerobically trained compared to sedentary young healthy males. Eur. J. Appl. Physiol. 2013;113:2737–2747. doi: 10.1007/s00421-013-2711-y.
    1. McCoy M., Proietto J., Hargreves M. Effect of detraining on GLUT-4 protein in human skeletal muscle. J. Appl. Physiol. 1994;77:1532–1536. doi: 10.1152/jappl.1994.77.3.1532.
    1. Kraniou G.N., Cameron-Smith D., Hargreaves M. Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle. Exp. Physiol. 2004;89:559–563. doi: 10.1113/expphysiol.2004.027409.
    1. Blundell J.E., Caudwell P., Gibbons C., Hopkins M., Näslund E., King N.A., Finlayson G. Body composition and appetite: Fat-free mass (but not fat mass or BMI) is positively associated with self-determined meal size and daily energy intake in humans. Br. J. Nutr. 2012;107:445–449. doi: 10.1017/S0007114511003138.
    1. Van Der Klaauw A.A., Farooqi I.S. The hunger genes: Pathways to obesity. Cell. 2015;161:119–132. doi: 10.1016/j.cell.2015.03.008.
    1. Frayling T.M., Timpson N.J., Weedon M.N., Zeggini E., Freathy R.M., Lindgren C.M., Perry J.R.B., Elliott K.S., Lango H., Rayner N.W., et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–894. doi: 10.1126/science.1141634.
    1. Karra E., Daly O.G.O., Choudhury A.I., Yousseif A., Millership S., Neary M.T., Scott W.R., Chandarana K., Manning S., Hess M.E., et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Investig. 2013;123:1–13. doi: 10.1172/JCI44403.
    1. Cecil J.E., Tavendale R., Watt P., Hetherington M.M., Palmer C.N.A. An obesity-associated FTO gene variant and increased energy intake in children. N. Engl. J. Med. 2008;359:2558–2566. doi: 10.1056/NEJMoa0803839.
    1. Shimokata H., Tobin J.D., Muller D.C., Elahi D., Coon P.J., Andres R. Studies in the distribution of body fat: Effects of age, sex, and obesity. J. Gerontol. 1989;44:M66–M73. doi: 10.1093/geronj/44.2.M66.
    1. MacIntosh C.G., Andrews J.M., Jones K.L., Wishart J.M., Morris H.A., Jansen J.B.M.J., Morley J.E., Horowitz M., Chapman I.M. Effects of age on concentrations of plasma cholecystokinin, glucagon-like peptide 1, and peptide YY and their relation appetite and pyloric motility. Am. J. Clin. Nutr. 1999;69:999–1006. doi: 10.1093/ajcn/69.5.999.
    1. Atalayer D., Astbury N.M. Anorexia of aging and gut hormones. Aging Dis. 2013;4:264–275. doi: 10.14336/AD.2013.0400264.
    1. Schoeller D.A. Limitations in the assessment of dietary energy intake by self-report. Metabolism. 1995;44:18–22. doi: 10.1016/0026-0495(95)90204-X.
    1. Hosoda H., Doi K., Nagaya N., Okumura H., Nakagawa E., Enomoto M., Ono F., Kangawa K. Optimum collection and storage conditions for ghrelin measurements: Octanoyl modification of ghrelin is rapidly hydrolyzed to desacyl ghrelin in blood samples. Clin. Chem. 2004;50:1077–1080. doi: 10.1373/clinchem.2003.025841.

Source: PubMed

3
Subskrybuj