Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations

Jasmeet Soar, Katherine M Berg, Lars W Andersen, Bernd W Böttiger, Sofia Cacciola, Clifton W Callaway, Keith Couper, Tobias Cronberg, Sonia D'Arrigo, Charles D Deakin, Michael W Donnino, Ian R Drennan, Asger Granfeldt, Cornelia W E Hoedemaekers, Mathias J Holmberg, Cindy H Hsu, Marlijn Kamps, Szymon Musiol, Kevin J Nation, Robert W Neumar, Tonia Nicholson, Brian J O'Neil, Quentin Otto, Edison Ferreira de Paiva, Michael J A Parr, Joshua C Reynolds, Claudio Sandroni, Barnaby R Scholefield, Markus B Skrifvars, Tzong-Luen Wang, Wolfgang A Wetsch, Joyce Yeung, Peter T Morley, Laurie J Morrison, Michelle Welsford, Mary Fran Hazinski, Jerry P Nolan, Adult Advanced Life Support Collaborators, Issa Mahmoud, Monica E Kleinman, Giuseppe Ristagno, Julie Arafeh, Justin L Benoit, Maureen Chase, Bryan L Fischberg, Gustavo E Flores, Mark S Link, Joseph P Ornato, Sarah M Perman, Comilla Sasson, Carolyn M Zelop, Jasmeet Soar, Katherine M Berg, Lars W Andersen, Bernd W Böttiger, Sofia Cacciola, Clifton W Callaway, Keith Couper, Tobias Cronberg, Sonia D'Arrigo, Charles D Deakin, Michael W Donnino, Ian R Drennan, Asger Granfeldt, Cornelia W E Hoedemaekers, Mathias J Holmberg, Cindy H Hsu, Marlijn Kamps, Szymon Musiol, Kevin J Nation, Robert W Neumar, Tonia Nicholson, Brian J O'Neil, Quentin Otto, Edison Ferreira de Paiva, Michael J A Parr, Joshua C Reynolds, Claudio Sandroni, Barnaby R Scholefield, Markus B Skrifvars, Tzong-Luen Wang, Wolfgang A Wetsch, Joyce Yeung, Peter T Morley, Laurie J Morrison, Michelle Welsford, Mary Fran Hazinski, Jerry P Nolan, Adult Advanced Life Support Collaborators, Issa Mahmoud, Monica E Kleinman, Giuseppe Ristagno, Julie Arafeh, Justin L Benoit, Maureen Chase, Bryan L Fischberg, Gustavo E Flores, Mark S Link, Joseph P Ornato, Sarah M Perman, Comilla Sasson, Carolyn M Zelop

Abstract

This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations for advanced life support includes updates on multiple advanced life support topics addressed with 3 different types of reviews. Topics were prioritized on the basis of both recent interest within the resuscitation community and the amount of new evidence available since any previous review. Systematic reviews addressed higher-priority topics, and included double-sequential defibrillation, intravenous versus intraosseous route for drug administration during cardiac arrest, point-of-care echocardiography for intra-arrest prognostication, cardiac arrest caused by pulmonary embolism, postresuscitation oxygenation and ventilation, prophylactic antibiotics after resuscitation, postresuscitation seizure prophylaxis and treatment, and neuroprognostication. New or updated treatment recommendations on these topics are presented. Scoping reviews were conducted for anticipatory charging and monitoring of physiological parameters during cardiopulmonary resuscitation. Topics for which systematic reviews and new Consensuses on Science With Treatment Recommendations were completed since 2015 are also summarized here. All remaining topics reviewed were addressed with evidence updates to identify any new evidence and to help determine which topics should be the highest priority for systematic reviews in the next 1 to 2 years.

Keywords: AHA Scientific Statements; arrhythmias; cardiopulmonary arrest; cardiopulmonary resuscitation and emergency cardiac care; echocardiography; post-cardiac arrest care; postresuscitation care; prognostication; sudden cardiac arrest; ventricular fibrillation.

Copyright © 2020. Published by Elsevier B.V.

References

    1. Soar J., Callaway C.W., Aibiki M., et al. Part 4: advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2015;95:e71–e120. doi: 10.1016/j.resuscitation.2015.07.042.
    1. Soar J., Maconochie I., Wyckoff M.H., et al. 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2019;145:95–150. doi: 10.1016/j.resuscitation.2019.10.016.
    1. Soar J., Maconochie I., Wyckoff M.H., et al. 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation. 2019;140:e826–e880. doi: 10.1161/CIR.0000000000000734.
    1. Soar J., Donnino M.W., Maconochie I., et al. 2018 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations Summary. Resuscitation. 2018;133:194–206. doi: 10.1016/j.resuscitation.2018.10.017.
    1. Soar J., Donnino M.W., Maconochie I., et al. 2018 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations Summary. Circulation. 2018;138:e714–e730. doi: 10.1161/CIR.0000000000000611.
    1. Morrison L.J., Deakin C.D., Morley P.T., et al. Part 8: advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010;122:S345–421. doi: 10.1161/CIRCULATIONAHA.110.971051.
    1. Callaway C.W., Soar J., Aibiki M., et al. Part 4: advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2015;132:S84–S145. doi: 10.1161/cir.0000000000000273.
    1. Deakin C.D., Morrison L.J., Morley P.T., et al. Part 8: advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2010;81(suppl 1):e93–e174. doi: 10.1016/j.resuscitation.2010.08.027.
    1. PRISMA. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) website. . Accessed August 13, 2020.
    1. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. GRADE Handbook. Accessed December 31, 2019.
    1. Morley P., Atkins D., Finn J.M., et al. Evidence evaluation process and management of potential conflicts of interest: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2020;142(suppl 1) doi: 10.1161/CIR.0000000000000891. e00–e00.
    2. Morley P.T., Atkins D.L., Finn J.C., et al. Evidence evaluation process and management of potential conflicts of interest: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2020;156:A23–A33.
    1. Morley P.T., Zaritsky A. The evidence evaluation process for the 2005 International Consensus Conference on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2005;67:167–170. doi: 10.1016/j.resuscitation.2005.09.007.
    1. Morley P.T., Atkins D.L., Billi J.E., et al. Part 3: evidence evaluation process: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010;122:S283–S290. doi: 10.1161/CIRCULATIONAHA.110.970947.
    1. International Liaison Committee on Resuscitation website. . Accessed August 13, 2020.
    1. Perkins G.D., Morley P.T., Nolan J.P., et al. International Liaison Committee on Resuscitation: COVID-19 consensus on science, treatment recommendations and task force insights. Resuscitation. 2020;151:145–147. doi: 10.1016/j.resuscitation.2020.04.035.
    1. Neumar R.W., Otto C.W., Link M.S., et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122:S729–S767. doi: 10.1161/CIRCULATIONAHA.110.970988.
    1. Soar J., Nolan J.P., Böttiger B.W., et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 3. Adult advanced life support. Resuscitation. 2015;95:100–147. doi: 10.1016/j.resuscitation.2015.07.016.
    1. Otto Q., Deakin C., Morley P., Soar J. Anticipatory manual defibrillator charging during advanced life support: a scoping review. Resuscitation Plus. 2020;1–2:100004. doi: 10.1016/j.resplu.2020.100004.
    1. Mahood Q., Van Eerd D., Irvin E. Searching for grey literature for systematic reviews: challenges and benefits. Res Synth Methods. 2014;5:221–234. doi: 10.1002/jrsm.1106.
    1. Paez A. Gray literature: an important resource in systematic reviews. J Evid Based Med. 2017;10:233–240. doi: 10.1111/jebm.12266.
    1. Edelson D.P., Robertson-Dick B.J., Yuen T.C., et al. Safety and efficacy of defibrillator charging during ongoing chest compressions: a multi-center study. Resuscitation. 2010;81:1521–1526. doi: 10.1016/j.resuscitation.2010.07.014.
    1. Koch Hansen L., Mohammed A., Pedersen M., et al. The Stop-Only-While-Shocking algorithm reduces hands-off time by 17% during cardiopulmonary resuscitation — a simulation study. Eur J Emerg Med. 2016;23:413–417. doi: 10.1097/MEJ.0000000000000282.
    1. Hansen L.K., Folkestad L., Brabrand M. Defibrillator charging before rhythm analysis significantly reduces hands-off time during resuscitation: a simulation study. Am J Emerg Med. 2013;31:395–400. doi: 10.1016/j.ajem.2012.08.029.
    1. Kemper M., Zech A., Lazarovici M., et al. Defibrillator charging before rhythm analysis causes peri-shock pauses exceeding guideline recommended maximum 5 s: a randomized simulation trial. Anaesthesist. 2019;68:546–554. doi: 10.1007/s00101-019-0623-x.
    1. Koster R.W., Walker R.G., Chapman F.W. Recurrent ventricular fibrillation during advanced life support care of patients with prehospital cardiac arrest. Resuscitation. 2008;78:252–257. doi: 10.1016/j.resuscitation.2008.03.231.
    1. Sakai T., Iwami T., Tasaki O., et al. Incidence and outcomes of out-of-hospital cardiac arrest with shock-resistant ventricular fibrillation: Data from a large population-based cohort. Resuscitation. 2010;81:956–961. doi: 10.1016/j.resuscitation.2010.04.015.
    1. Holmén J., Hollenberg J., Claesson A., et al. Survival in ventricular fibrillation with emphasis on the number of defibrillations in relation to other factors at resuscitation. Resuscitation. 2017;113:33–38. doi: 10.1016/j.resuscitation.2017.01.006.
    1. Hasegawa M., Abe T., Nagata T., Onozuka D., Hagihara A. The number of prehospital defibrillation shocks and 1-month survival in patients with out-of-hospital cardiac arrest. Scand J Trauma Resusc Emerg Med. 2015;23:34. doi: 10.1186/s13049-015-0112-4.
    1. Mapp J.G., Hans A.J., Darrington A.M., et al. Prehospital double sequential defibrillation: a matched case-control study. Acad Emerg Med. 2019;26:994–1001. doi: 10.1111/acem.13672.
    1. Ross E.M., Redman T.T., Harper S.A., Mapp J.G., Wampler D.A., Miramontes D.A. Dual defibrillation in out-of-hospital cardiac arrest: a retrospective cohort analysis. Resuscitation. 2016;106:14–17. doi: 10.1016/j.resuscitation.2016.06.011.
    1. Cortez E., Krebs W., Davis J., Keseg D.P., Panchal A.R. Use of double sequential external defibrillation for refractory ventricular fibrillation during out-of-hospital cardiac arrest. Resuscitation. 2016;108:82–86. doi: 10.1016/j.resuscitation.2016.08.002.
    1. Beck L.R., Ostermayer D.G., Ponce J.N., Srinivasan S., Wang H.E. Effectiveness of prehospital dual sequential defibrillation for refractory ventricular fibrillation and ventricular tachycardia cardiac arrest. Prehosp Emerg Care. 2019;23:597–602. doi: 10.1080/10903127.2019.1584256.
    1. Emmerson A.C., Whitbread M., Fothergill R.T. Double sequential defibrillation therapy for out-of-hospital cardiac arrests: the London experience. Resuscitation. 2017;117:97–101. doi: 10.1016/j.resuscitation.2017.06.011.
    1. Cabañas J.G., Myers J.B., Williams J.G., De Maio V.J., Bachman M.W. Double sequential external defibrillation in out-of-hospital refractory ventricular fibrillation: a report of ten cases. Prehosp Emerg Care. 2015;19:126–130. doi: 10.3109/10903127.2014.942476.
    1. Cheskes S., Wudwud A., Turner L., et al. The impact of double sequential external defibrillation on termination of refractory ventricular fibrillation during out-of-hospital cardiac arrest. Resuscitation. 2019;139:275–281. doi: 10.1016/j.resuscitation.2019.04.038.
    1. Deakin C.D., Morley P., Soar J., Drennan I.R., on behalf of the International Liaison Committee on Resuscitation Advanced Life Support Task Force . 2020. Double sequence defibrillation (ALS): systematic review. Accessed August 13, 2020.
    1. Cheskes S., Dorian P., Feldman M., et al. Double sequential external defibrillation for refractory ventricular fibrillation: the DOSE VF pilot randomized controlled trial. Resuscitation. 2020;150:178–184. doi: 10.1016/j.resuscitation.2020.02.010.
    1. Zijlstra J.A., Bekkers L.E., Hulleman M., Beesems S.G., Koster R.W. Automated external defibrillator and operator performance in out-of-hospital cardiac arrest. Resuscitation. 2017;118:140–146. doi: 10.1016/j.resuscitation.2017.05.017.
    1. Israelsson J., Wangenheim B.V., Årestedt K., Semark B., Schildmeijer K., Carlsson J. Sensitivity and specificity of two different automated external defibrillators. Resuscitation. 2017;120:108–112. doi: 10.1016/j.resuscitation.2017.09.009.
    1. Nehme Z., Andrew E., Nair R., Bernard S., Smith K. Manual versus semiautomatic rhythm analysis and defibrillation for out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2017;10 doi: 10.1161/CIRCOUTCOMES.116.003577.
    1. Loma-Osorio P., Nunez M., Aboal J., et al. The Girona Territori Cardioprotegit Project: performance evaluation of public defibrillators. Rev Esp Cardiol (Engl Ed) 2018;71:79–85. doi: 10.1016/j.rec.2017.04.011.
    1. Cheskes S., Hillier M., Byers A., et al. The association between manual mode defibrillation, pre-shock pause duration and appropriate shock delivery when employed by basic life support paramedics during out-of-hospital cardiac arrest. Resuscitation. 2015;90:61–66. doi: 10.1016/j.resuscitation.2015.02.022.
    1. Sunde K., Jacobs I., Deakin C.D., et al. Part 6: defibrillation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2010;81:e71–85. doi: 10.1016/j.resuscitation.2010.08.025.
    1. Jacobs I., Sunde K., Deakin C.D., et al. Part 6: Defibrillation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2010;122:S325–337. doi: 10.1161/CIRCULATIONAHA.110.971010.
    1. Freese J.P., Jorgenson D.B., Liu P.Y., et al. Waveform analysis-guided treatment versus a standard shock-first protocol for the treatment of out-of-hospital cardiac arrest presenting in ventricular fibrillation: results of an international randomized, controlled trial. Circulation. 2013;128:995–1002. doi: 10.1161/CIRCULATIONAHA.113.003273.
    1. Shandilya S., Ward K., Kurz M., Najarian K. Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning. BMC Med Inform Decis Mak. 2012;12:116. doi: 10.1186/1472-6947-12-116.
    1. Nakagawa Y., Sato Y., Kojima T., et al. Electrical defibrillation outcome prediction by waveform analysis of ventricular fibrillation in cardiac arrest out of hospital patients. Tokai J Exp Clin Med. 2012;37:1–5.
    1. Lin L.Y., Lo M.T., Ko P.C., et al. Detrended fluctuation analysis predicts successful defibrillation for out-of-hospital ventricular fibrillation cardiac arrest. Resuscitation. 2010;81:297–301. doi: 10.1016/j.resuscitation.2009.12.003.
    1. Wu X., Bisera J., Tang W. Signal integral for optimizing the timing of defibrillation. Resuscitation. 2013;84:1704–1707. doi: 10.1016/j.resuscitation.2013.08.005.
    1. Coult J., Blackwood J., Sherman L., Rea T.D., Kudenchuk P.J., Kwok H. Ventricular fibrillation waveform analysis during chest compressions to predict survival from cardiac arrest. Circ Arrhythm Electrophysiol. 2019;12 doi: 10.1161/CIRCEP.118.006924.
    1. He M., Lu Y., Zhang L., Zhang H., Gong Y., Li Y. Combining amplitude spectrum area with previous shock information using neural networks improves prediction performance of defibrillation outcome for subsequent shocks in out-of-hospital cardiac arrest patients. PLoS One. 2016;11 doi: 10.1371/journal.pone.0149115.
    1. Balderston J.R., Gertz Z.M., Ellenbogen K.A., Schaaf K.P., Ornato J.P. Association between ventricular fibrillation amplitude immediately prior to defibrillation and defibrillation success in out-of-hospital cardiac arrest. Am Heart J. 2018;201:72–76. doi: 10.1016/j.ahj.2018.04.002.
    1. Agerskov M., Hansen M.B., Nielsen A.M., Møller T.P., Wissenberg M., Rasmussen L.S. Return of spontaneous circulation and long-term survival according to feedback provided by automated external defibrillators. Acta Anaesthesiol Scand. 2017;61:1345–1353. doi: 10.1111/aas.12992.
    1. Coult J., Kwok H., Sherman L., Blackwood J., Kudenchuk P.J., Rea T.D. Ventricular fibrillation waveform measures combined with prior shock outcome predict defibrillation success during cardiopulmonary resuscitation. J Electrocardiol. 2018;51:99–106. doi: 10.1016/j.jelectrocard.2017.07.016.
    1. Hulleman M., Salcido D.D., Menegazzi J.J., et al. Predictive value of amplitude spectrum area of ventricular fibrillation waveform in patients with acute or previous myocardial infarction in out-of-hospital cardiac arrest. Resuscitation. 2017;120:125–131. doi: 10.1016/j.resuscitation.2017.08.219.
    1. Jin D., Dai C., Gong Y., Lu Y., Zhang L., Quan W., Li Y. Does the choice of definition for defibrillation and CPR success impact the predictability of ventricular fibrillation waveform analysis? Resuscitation. 2017;111:48–54. doi: 10.1016/j.resuscitation.2016.11.022.
    1. Coult J., Sherman L., Kwok H., Blackwood J., Kudenchuk P.J., Rea T.D. Short ECG segments predict defibrillation outcome using quantitative waveform measures. Resuscitation. 2016;109:16–20. doi: 10.1016/j.resuscitation.2016.09.020.
    1. Indik J.H., Conover Z., McGovern M., et al. Association of amplitude spectral area of the ventricular fibrillation waveform with survival of out-of-hospital ventricular fibrillation cardiac arrest. J Am Coll Cardiol. 2014;64:1362–1369. doi: 10.1016/j.jacc.2014.06.1196.
    1. Hall M., Phelps R., Fahrenbruch C., Sherman L., Blackwood J., Rea T.D. Myocardial substrate in secondary ventricular fibrillation: insights from quantitative waveform measures. Prehosp Emerg Care. 2011;15:388–392. doi: 10.3109/10903127.2011.561407.
    1. Foomany F.H., Umapathy K., Sugavaneswaran L., et al. Wavelet-based markers of ventricular fibrillation in optimizing human cardiac resuscitation. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2001–2004. doi: 10.1109/IEMBS.2010.5627841.
    1. Endoh H., Hida S., Oohashi S., Hayashi Y., Kinoshita H., Honda T. Prompt prediction of successful defibrillation from 1-s ventricular fibrillation waveform in patients with out-of-hospital sudden cardiac arrest. J Anesth. 2011;25:34–41. doi: 10.1007/s00540-010-1043-x.
    1. Aiello S., Perez M., Cogan C., et al. Real-time ventricular fibrillation amplitude-spectral area analysis to guide timing of shock delivery improves defibrillation efficacy during cardiopulmonary resuscitation in swine. J Am Heart Assoc. 2017;6 doi: 10.1161/JAHA.117.006749.
    1. Hidano D., Coult J., Blackwood J., et al. Ventricular fibrillation waveform measures and the etiology of cardiac arrest. Resuscitation. 2016;109:71–75. doi: 10.1016/j.resuscitation.2016.10.007.
    1. Howe A., Escalona O.J., Di Maio R., et al. A support vector machine for predicting defibrillation outcomes from waveform metrics. Resuscitation. 2014;85:343–349. doi: 10.1016/j.resuscitation.2013.11.021.
    1. Nakagawa Y., Amino M., Inokuchi S., Hayashi S., Wakabayashi T., Noda T. Novel CPR system that predicts return of spontaneous circulation from amplitude spectral area before electric shock in ventricular fibrillation. Resuscitation. 2017;113:8–12. doi: 10.1016/j.resuscitation.2016.12.025.
    1. Granfeldt A., Avis S.R., Nicholson T.C., et al. Advanced airway management during adult cardiac arrest: a systematic review. Resuscitation. 2019;139:133–143. doi: 10.1016/j.resuscitation.2019.04.003.
    1. Spindelboeck W., Gemes G., Strasser C., et al. Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation. 2016;106:24–29. doi: 10.1016/j.resuscitation.2016.06.013.
    1. Patel J.K., Schoenfeld E., Parikh P.B., Parnia S. Association of arterial oxygen tension during in-hospital cardiac arrest with return of spontaneous circulation and survival. J Intensive Care Med. 2018;33:407–414. doi: 10.1177/0885066616658420.
    1. Rognås L., Hansen T.M., Kirkegaard H., Tønnesen E. Standard operating procedure changed pre-hospital critical care anaesthesiologists’ behaviour: a quality control study. Scand J Trauma Resusc Emerg Med. 2013;21:84. doi: 10.1186/1757-7241-21-84.
    1. Allen S.G., Brewer L., Gillis E.S., Pace N.L., Sakata D.J., Orr J.A. A turbine-driven ventilator improves adherence to advanced cardiac life support guidelines during a cardiopulmonary resuscitation simulation. Respir Care. 2017;62:1166–1170. doi: 10.4187/respcare.05368.
    1. El Sayed M., Tamim H., Mailhac A., N Clay M. Ventilator use by emergency medical services during 911 calls in the United States. Am J Emerg Med. 2018;36:763–768. doi: 10.1016/j.ajem.2017.10.008.
    1. El Sayed M.J., Tamim H., Mailhac A., Mann N.C. Impact of prehospital mechanical ventilation: a retrospective matched cohort study of 911 calls in the United States. Medicine (Baltimore) 2019;98 doi: 10.1097/MD.0000000000013990.
    1. Holmberg M.J., Geri G., Wiberg S., et al. Extracorporeal cardiopulmonary resuscitation for cardiac arrest: a systematic review. Resuscitation. 2018;131:91–100. doi: 10.1016/j.resuscitation.2018.07.029.
    1. Sutton R.M., French B., Meaney P.A., et al. Physiologic monitoring of CPR quality during adult cardiac arrest: a propensity-matched cohort study. Resuscitation. 2016;106:76–82. doi: 10.1016/j.resuscitation.2016.06.018.
    1. Schnaubelt S., Sulzgruber P., Menger J., Skhirtladze-Dworschak K., Sterz F., Dworschak M. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome — a review of the current literature. Resuscitation. 2018;125:39–47. doi: 10.1016/j.resuscitation.2018.01.028.
    1. Cournoyer A., Iseppon M., Chauny J.M., Denault A., Cossette S., Notebaert É. Near-infrared spectroscopy monitoring during cardiac arrest: a systematic review and meta-analysis. Acad Emerg Med. 2016;23:851–862. doi: 10.1111/acem.12980.
    1. Prosen G., Strnad M., Doniger S.J., et al. Cerebral tissue oximetry levels during prehospital management of cardiac arrest — a prospective observational study. Resuscitation. 2018;129:141–145. doi: 10.1016/j.resuscitation.2018.05.014.
    1. Tsukuda J., Fujitani S., Morisawa K., et al. Near-infrared spectroscopy monitoring during out-of-hospital cardiac arrest: can the initial cerebral tissue oxygenation index predict ROSC? Emerg Med J. 2019;36:33–38. doi: 10.1136/emermed-2018-207533.
    1. Yazar M.A., Açıkgöz M.B., Bayram A. Does chest compression during cardiopulmonary resuscitation provide sufficient cerebral oxygenation? Turk J Med Sci. 2019;49:311–317. doi: 10.3906/sag-1809-165.
    1. Singer A.J., Nguyen R.T., Ravishankar S.T., et al. Cerebral oximetry versus end tidal CO2 in predicting ROSC after cardiac arrest. Am J Emerg Med. 2018;36:403–407. doi: 10.1016/j.ajem.2017.08.046.
    1. Nagdyman N., Ewert P., Peters B., Miera O., Fleck T., Berger F. Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Paediatr Anaesth. 2008;18:160–166. doi: 10.1111/j.1460-9592.2007.02365.x.
    1. Kudenchuk P.J., Brown S.P., Daya M., et al. Amiodarone, lidocaine, or placebo in out-of-hospital cardiac arrest. N Engl J Med. 2016;374:1711–1722. doi: 10.1056/NEJMoa1514204.
    1. Perkins G.D., Ji C., Deakin C.D., et al. A randomized trial of epinephrine in out-of-hospital cardiac arrest. N Engl J Med. 2018;379:711–721. doi: 10.1056/NEJMoa1806842.
    1. Daya M.R., Leroux B.G., Dorian P., et al. Survival after intravenous versus intraosseous amiodarone, lidocaine, or placebo in out-of-hospital shock-refractory cardiac arrest. Circulation. 2020;141:188–198. doi: 10.1161/CIRCULATIONAHA.119.042240.
    1. Nolan J.P., Deakin C.D., Ji C., et al. Intraosseous versus intravenous administration of adrenaline in patients with out-of-hospital cardiac arrest: a secondary analysis of the PARAMEDIC2 placebo-controlled trial. Intensive Care Med. 2020;46:954–962. doi: 10.1007/s00134-019-05920-7.
    1. Holmberg M.J., Issa M.S., Moskowitz A., et al. Vasopressors during adult cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2019;139:106–121. doi: 10.1016/j.resuscitation.2019.04.008.
    1. Ali M.U., Fitzpatrick-Lewis D., Kenny M., et al. Effectiveness of antiarrhythmic drugs for shockable cardiac arrest: a systematic review. Resuscitation. 2018;132:63–72. doi: 10.1016/j.resuscitation.2018.08.025.
    1. Granfeldt A., Avis S.R., Lind P.C., et al. Intravenous vs. intraosseous administration of drugs during cardiac arrest: a systematic review. Resuscitation. 2020;149:150–157. doi: 10.1016/j.resuscitation.2020.02.025.
    1. Mody P., Brown S.P., Kudenchuk P.J., et al. Intraosseous versus intravenous access in patients with out-of-hospital cardiac arrest: Insights from the resuscitation outcomes consortium continuous chest compression trial. Resuscitation. 2019;134:69–75. doi: 10.1016/j.resuscitation.2018.10.031.
    1. Feinstein B.A., Stubbs B.A., Rea T., Kudenchuk P.J. Intraosseous compared to intravenous drug resuscitation in out-of-hospital cardiac arrest. Resuscitation. 2017;117:91–96. doi: 10.1016/j.resuscitation.2017.06.014.
    1. Kawano T., Grunau B., Scheuermeyer F.X., et al. Intraosseous vascular access is associated with lower survival and neurologic recovery among patients with out-of-hospital cardiac arrest. Ann Emerg Med. 2018;71:588–596. doi: 10.1016/j.annemergmed.2017.11.015.
    1. Zhang Y., Zhu J., Liu Z., Gu L., et al. Intravenous versus intraosseous adrenaline administration in out-of-hospital cardiac arrest: a retrospective cohort study. Resuscitation. 2020 doi: 10.1016/j.resuscitation.2020.01.009.
    1. Link M.S., Berkow L.C., Kudenchuk P.J., et al. Part 7: adult advanced cardiovascular life support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132:S444–S464. doi: 10.1161/CIR.0000000000000261.
    1. Tsai M.S., Chuang P.Y., Huang C.H., et al. Postarrest steroid use may improve outcomes of cardiac arrest survivors. Crit Care Med. 2019;47:167–175. doi: 10.1097/CCM.0000000000003468.
    1. Niimura T., Zamami Y., Koyama T., et al. Hydrocortisone administration was associated with improved survival in Japanese patients with cardiac arrest. Sci Rep. 2017;7 doi: 10.1038/s41598-017-17686-3.
    1. Ahn S., Kim Y.J., Sohn C.H., et al. Sodium bicarbonate on severe metabolic acidosis during prolonged cardiopulmonary resuscitation: a double-blind, randomized, placebo-controlled pilot study. J Thorac Dis. 2018;10:2295–2302. doi: 10.21037/jtd.2018.03.124.
    1. Chen Y.C., Hung M.S., Liu C.Y., Hsiao C.T., Yang Y.H. The association of emergency department administration of sodium bicarbonate after out of hospital cardiac arrest with outcomes. Am J Emerg Med. 2018;36:1998–2004. doi: 10.1016/j.ajem.2018.03.010.
    1. Wang C.H., Huang C.H., Chang W.T., et al. The effects of calcium and sodium bicarbonate on severe hyperkalaemia during cardiopulmonary resuscitation: a retrospective cohort study of adult in-hospital cardiac arrest. Resuscitation. 2016;98:105–111. doi: 10.1016/j.resuscitation.2015.09.384.
    1. Kawano T., Grunau B., Scheuermeyer F.X., et al. Prehospital sodium bicarbonate use could worsen long term survival with favorable neurological recovery among patients with out-of-hospital cardiac arrest. Resuscitation. 2017;119:63–69. doi: 10.1016/j.resuscitation.2017.08.008.
    1. Kim J., Kim K., Park J., et al. Sodium bicarbonate administration during ongoing resuscitation is associated with increased return of spontaneous circulation. Am J Emerg Med. 2016;34:225–229. doi: 10.1016/j.ajem.2015.10.037.
    1. Reynolds J.C., Issa M.S., Nicholson T., et al. Prognostication with point-of-care echocardiography during cardiac arrest: a systematic review. Resuscitation. 2020;152:56–68. doi: 10.1016/j.resuscitation.2020.05.004.
    1. Lien W.C., Hsu S.H., Chong K.M., et al. US-CAB protocol for ultrasonographic evaluation during cardiopulmonary resuscitation: validation and potential impact. Resuscitation. 2018;127:125–131. doi: 10.1016/j.resuscitation.2018.01.051.
    1. Salen P., Melniker L., Chooljian C., et al. Does the presence or absence of sonographically identified cardiac activity predict resuscitation outcomes of cardiac arrest patients? Am J Emerg Med. 2005;23:459–462. doi: 10.1016/j.ajem.2004.11.007.
    1. Salen P., O’Connor R., Sierzenski P., et al. Can cardiac sonography and capnography be used independently and in combination to predict resuscitation outcomes? Acad Emerg Med. 2001;8:610–615. doi: 10.1111/j.1553-2712.2001.tb00172.x.
    1. Tayal V.S., Kline J.A. Emergency echocardiography to detect pericardial effusion in patients in PEA and near-PEA states. Resuscitation. 2003;59:315–318. doi: 10.1016/s0300-9572(03)00245-4.
    1. Varriale P., Maldonado J.M. Echocardiographic observations during in hospital cardiopulmonary resuscitation. Crit Care Med. 1997;25:1717–1720. doi: 10.1097/00003246-199710000-00023.
    1. Aichinger G., Zechner P.M., Prause G., et al. Cardiac movement identified on prehospital echocardiography predicts outcome in cardiac arrest patients. Prehosp Emerg Care. 2012;16:251–255. doi: 10.3109/10903127.2011.640414.
    1. Atkinson P.R., Beckett N., French J., Banerjee A., Fraser J., Lewis D. Does point-of-care ultrasound use impact resuscitation length, rates of intervention, and clinical outcomes during cardiac arrest? A study from the sonography in hypotension and cardiac arrest in the emergency department (SHoC-ED) investigators. Cureus. 2019;11:e4456. doi: 10.7759/cureus.4456.
    1. Blaivas M., Fox J.C. Outcome in cardiac arrest patients found to have cardiac standstill on the bedside emergency department echocardiogram. Acad Emerg Med. 2001;8:616–621. doi: 10.1111/j.1553-2712.2001.tb00174.x.
    1. Breitkreutz R., Price S., Steiger H.V., et al. Focused echocardiographic evaluation in life support and peri-resuscitation of emergency patients: a prospective trial. Resuscitation. 2010;81:1527–1533. doi: 10.1016/j.resuscitation.2010.07.013.
    1. Chardoli M., Heidari F., Rabiee H., Sharif-Alhoseini M., Shokoohi H., Rahimi-Movaghar V. Echocardiography integrated ACLS protocol versus conventional cardiopulmonary resuscitation in patients with pulseless electrical activity cardiac arrest. Chin J Traumatol. 2012;15:284–287.
    1. Chua M.T., Chan G.W., Kuan W.S. Reversible causes in cardiovascular collapse at the emergency department using ultrasonography (REVIVE-US) Ann Acad Med Singapore. 2017;46:310–316.
    1. Flato U.A., Paiva E.F., Carballo M.T., Buehler A.M., Marco R., Timerman A. Echocardiography for prognostication during the resuscitation of intensive care unit patients with non-shockable rhythm cardiac arrest. Resuscitation. 2015;92:1–6. doi: 10.1016/j.resuscitation.2015.03.024.
    1. Gaspari R., Weekes A., Adhikari S., et al. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016;109:33–39. doi: 10.1016/j.resuscitation.2016.09.018.
    1. Kim H.B., Suh J.Y., Choi J.H., Cho Y.S. Can serial focussed echocardiographic evaluation in life support (FEEL) predict resuscitation outcome or termination of resuscitation (TOR)? A pilot study. Resuscitation. 2016;101:21–26. doi: 10.1016/j.resuscitation.2016.01.013.
    1. Zengin S., Yavuz E., Al B., et al. Benefits of cardiac sonography performed by a non-expert sonographer in patients with non-traumatic cardiopulmonary arrest. Resuscitation. 2016;102:105–109. doi: 10.1016/j.resuscitation.2016.02.025.
    1. Querellou E., Leyral J., Brun C., et al. [In and out-of-hospital cardiac arrest and echography: a review] Ann Fr Anesth Reanim. 2009;28:769–778. doi: 10.1016/j.annfar.2009.06.020.
    1. Blanco P., Volpicelli G. Common pitfalls in point-of-care ultrasound: a practical guide for emergency and critical care physicians. Crit Ultrasound J. 2016;8:15. doi: 10.1186/s13089-016-0052-x.
    1. Aagaard R., Granfeldt A., Bøtker M.T., Mygind-Klausen T., Kirkegaard H., Løfgren B. The right ventricle is dilated during resuscitation from cardiac arrest caused by hypovolemia: a porcine ultrasound study. Crit Care Med. 2017;45:e963–e970. doi: 10.1097/CCM.0000000000002464.
    1. Clattenburg E.J., Wroe P., Brown S., et al. Point-of-care ultrasound use in patients with cardiac arrest is associated prolonged cardiopulmonary resuscitation pauses: a prospective cohort study. Resuscitation. 2018;122:65–68. doi: 10.1016/j.resuscitation.2017.11.056.
    1. Huis In ‘t Veld M.A., Allison M.G., Bostick D.S., et al. Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions. Resuscitation. 2017;119:95–98. doi: 10.1016/j.resuscitation.2017.07.021.
    1. Clattenburg E.J., Wroe P.C., Gardner K., et al. Implementation of the Cardiac Arrest Sonographic Assessment (CASA) protocol for patients with cardiac arrest is associated with shorter CPR pulse checks. Resuscitation. 2018;131:69–73. doi: 10.1016/j.resuscitation.2018.07.030.
    1. Finn T.E., Ward J.L., Wu C.T., Giles A., Manivel V. COACHRED: a protocol for the safe and timely incorporation of focused echocardiography into the rhythm check during cardiopulmonary resuscitation. Emerg Med Australas. 2019;31:1115–1118. doi: 10.1111/1742-6723.13374.
    1. Paiva E.F., Paxton J.H., O’Neil B.J. The use of end-tidal carbon dioxide (ETCO2) measurement to guide management of cardiac arrest: A systematic review. Resuscitation. 2018;123:1–7. doi: 10.1016/j.resuscitation.2017.12.003.
    1. Pearce A.K., Davis D.P., Minokadeh A., Sell R.E. Initial end-tidal carbon dioxide as a prognostic indicator for inpatient PEA arrest. Resuscitation. 2015;92:77–81. doi: 10.1016/j.resuscitation.2015.04.025.
    1. Poon K.M., Lui C.T., Tsui K.L. Prognostication of out-of-hospital cardiac arrest patients by 3-min end-tidal capnometry level in emergency department. Resuscitation. 2016;102:80–84. doi: 10.1016/j.resuscitation.2016.02.021.
    1. Poppe M., Stratil P., Clodi C., et al. Initial end-tidal carbon dioxide as a predictive factor for return of spontaneous circulation in nonshockable out-of-hospital cardiac arrest patients: a retrospective observational study. Eur J Anaesthesiol. 2019;36:524–530. doi: 10.1097/EJA.0000000000000999.
    1. Wang A.Y., Huang C.H., Chang W.T., Tsai M.S., Wang C.H., Chen W.J. Initial end-tidal CO2 partial pressure predicts outcomes of in-hospital cardiac arrest. Am J Emerg Med. 2016;34:2367–2371. doi: 10.1016/j.ajem.2016.08.052.
    1. Akinci E., Ramadan H., Yuzbasioglu Y., Coskun F. Comparison of end-tidal carbon dioxide levels with cardiopulmonary resuscitation success presented to emergency department with cardiopulmonary arrest. Pak J Med Sci. 2014;30:16–21. doi: 10.12669/pjms.301.4024.
    1. Böttiger B.W., Arntz H.R., Chamberlain D.A., et al. Thrombolysis during resuscitation for out-of-hospital cardiac arrest. N Engl J Med. 2008;359:2651–2662. doi: 10.1056/NEJMoa070570.
    1. Javaudin F., Lascarrou J.B., Le Bastard Q., et al. Thrombolysis during resuscitation for out-of-hospital cardiac arrest caused by pulmonary embolism increases 30-day survival: findings from the french national cardiac arrest registry. Chest. 2019;156:1167–1175. doi: 10.1016/j.chest.2019.07.015.
    1. Yousuf T., Brinton T., Ahmed K., et al. Tissue plasminogen activator use in cardiac arrest secondary to fulminant pulmonary embolism. J Clin Med Res. 2016;8:190–195. doi: 10.14740/jocmr2452w.
    1. Kürkciyan I., Meron G., Sterz F., et al. Pulmonary embolism as a cause of cardiac arrest: presentation and outcome. Arch Intern Med. 2000;160:1529–1535. doi: 10.1001/archinte.160.10.1529.
    1. Janata K., Holzer M., Kürkciyan I., et al. Major bleeding complications in cardiopulmonary resuscitation: the place of thrombolytic therapy in cardiac arrest due to massive pulmonary embolism. Resuscitation. 2003;57:49–55. doi: 10.1016/s0300-9572(02)00430-6.
    1. Konstantinov I.E., Saxena P., Koniuszko M.D., Alvarez J., Newman M.A. Acute massive pulmonary embolism with cardiopulmonary resuscitation: management and results. Tex Heart Inst J. 2007;34:41–45. discussion 45.
    1. Doerge H.C., Schoendube F.A., Loeser H., Walter M., Messmer B.J. Pulmonary embolectomy: review of a 15-year experience and role in the age of thrombolytic therapy. Eur J Cardiothorac Surg. 1996;10:952–957. doi: 10.1016/s1010-7940(96)80396-4.
    1. Fava M., Loyola S., Bertoni H., Dougnac A. Massive pulmonary embolism: percutaneous mechanical thrombectomy during cardiopulmonary resuscitation. J Vasc Interv Radiol. 2005;16:119–123. doi: 10.1097/.
    1. Beckett V.A., Knight M., Sharpe P. The CAPS study: incidence, management and outcomes of cardiac arrest in pregnancy in the UK: a prospective, descriptive study. BJOG. 2017;124:1374–1381. doi: 10.1111/1471-0528.14521.
    1. Biderman P., Carmi U., Setton E., Fainblut M., Bachar O., Einav S. Maternal salvage with extracorporeal life support: lessons learned in a single center. Anesth Analg. 2017;125:1275–1280. doi: 10.1213/ANE.0000000000002262.
    1. Schaap T.P., Overtoom E., van den Akker T., Zwart J.J., van Roosmalen J., Bloemenkamp K.W.M. Maternal cardiac arrest in the Netherlands: a nationwide surveillance study. Eur J Obstet Gynecol Reprod Biol. 2019;237:145–150. doi: 10.1016/j.ejogrb.2019.04.028.
    1. Maurin O., Lemoine S., Jost D., et al. Maternal out-of-hospital cardiac arrest: a retrospective observational study. Resuscitation. 2019;135:205–211. doi: 10.1016/j.resuscitation.2018.11.001.
    1. Kobori S., Toshimitsu M., Nagaoka S., Yaegashi N., Murotsuki J. Utility and limitations of perimortem cesarean section: a nationwide survey in Japan. J Obstet Gynaecol Res. 2019;45:325–330. doi: 10.1111/jog.13819.
    2. Greif R., Bhanji F., Bigham B.L., et al. on behalf of the Education, Implementation, and Teams Collaborators. Education, implementation, and teams: International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2020;142(suppl 1):S222–S283. doi: 10.1161/CIR.0000000000000896.
    3. Greif R., Bhanji F., Bigham B.L., et al. on behalf of the Education, Implementation, and Teams Collaborators. Education, implementation, and teams: International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2020;156:A186–A237.
    1. Andersen L.W., Lind P.C., Vammen L., Høybye M., Holmberg M.J., Granfeldt A. Adult post-cardiac arrest interventions: an overview of randomized clinical trials. Resuscitation. 2020;147:1–11. doi: 10.1016/j.resuscitation.2019.12.003.
    1. Holmberg M.J., Nicholson T., Nolan J.P., et al. Oxygenation and ventilation targets after cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2020;152:107–115. doi: 10.1016/j.resuscitation.2020.04.031.
    1. Mackle D., Bellomo R., Bailey M., et al. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382:989–998. doi: 10.1056/NEJMoa1903297.
    1. Janz D.R., Hollenbeck R.D., Pollock J.S., McPherson J.A., Rice T.W. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med. 2012;40:3135–3139. doi: 10.1097/CCM.0b013e3182656976.
    1. Elmer J., Scutella M., Pullalarevu R., et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41:49–57. doi: 10.1007/s00134-014-3555-6.
    1. Roberts B.W., Kilgannon J.H., Hunter B.R., et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: prospective multicenter protocol-directed cohort study. Circulation. 2018;137:2114–2124. doi: 10.1161/CIRCULATIONAHA.117.032054.
    1. Wang H.E., Prince D.K., Drennan I.R., et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation. 2017;120:113–118. doi: 10.1016/j.resuscitation.2017.08.244.
    1. Johnson N.J., Dodampahala K., Rosselot B., et al. The association between arterial oxygen tension and neurological outcome after cardiac arrest. Ther Hypothermia Temp Manag. 2017;7:36–41. doi: 10.1089/ther.2016.0015.
    1. Humaloja J., Litonius E., Efendijev I., et al. Early hyperoxemia is not associated with cardiac arrest outcome. Resuscitation. 2019;140:185–193. doi: 10.1016/j.resuscitation.2019.04.035.
    1. von Auenmueller K.I., Christ M., Sasko B.M., Trappe H.J. The value of arterial blood gas parameters for prediction of mortality in survivors of out-of-hospital cardiac arrest. J Emerg Trauma Shock. 2017;10:134–139. doi: 10.4103/JETS.JETS_146_16.
    1. Ebner F., Ullén S., Åneman A., et al. Associations between partial pressure of oxygen and neurological outcome in out-of-hospital cardiac arrest patients: an explorative analysis of a randomized trial. Crit Care. 2019;23:30. doi: 10.1186/s13054-019-2322-z.
    1. Eastwood G.M., Tanaka A., Espinoza E.D., et al. Conservative oxygen therapy in mechanically ventilated patients following cardiac arrest: A retrospective nested cohort study. Resuscitation. 2016;101:108–114. doi: 10.1016/j.resuscitation.2015.11.026.
    1. Vaahersalo J., Bendel S., Reinikainen M., et al. Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: associations with long-term neurologic outcome. Crit Care Med. 2014;42:1463–1470. doi: 10.1097/CCM.0000000000000228.
    1. Jakkula P., Reinikainen M., Hästbacka J., et al. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44:2112–2121. doi: 10.1007/s00134-018-5453-9.
    1. Young P., Bailey M., Bellomo R., et al. HyperOxic Therapy OR NormOxic Therapy after out-of-hospital cardiac arrest (HOT OR NOT): a randomised controlled feasibility trial. Resuscitation. 2014;85:1686–1691. doi: 10.1016/j.resuscitation.2014.09.011.
    1. Kuisma M., Boyd J., Voipio V., Alaspää A., Roine R.O., Rosenberg P. Comparison of 30 and the 100% inspired oxygen concentrations during early post-resuscitation period: a randomised controlled pilot study. Resuscitation. 2006;69:199–206. doi: 10.1016/j.resuscitation.2005.08.010.
    1. Bray J.E., Hein C., Smith K., et al. Oxygen titration after resuscitation from out-of-hospital cardiac arrest: a multi-centre, randomised controlled pilot study (the EXACT pilot trial) Resuscitation. 2018;128:211–215. doi: 10.1016/j.resuscitation.2018.04.019.
    1. Thomas M., Voss S., Benger J., Kirby K., Nolan J.P. Cluster randomised comparison of the effectiveness of 100% oxygen versus titrated oxygen in patients with a sustained return of spontaneous circulation following out of hospital cardiac arrest: a feasibility study. PROXY: post ROSC OXYgenation study. BMC Emerg Med. 2019;19:16. doi: 10.1186/s12873-018-0214-1.
    1. Sekhon M.S., Griesdale D.E. Individualized perfusion targets in hypoxic ischemic brain injury after cardiac arrest. Crit Care. 2017;21:259. doi: 10.1186/s13054-017-1832-9.
    1. Eastwood G.M., Schneider A.G., Suzuki S., et al. Targeted therapeutic mild hypercapnia after cardiac arrest: a phase II multi-centre randomised controlled trial (the CCC trial) Resuscitation. 2016;104:83–90. doi: 10.1016/j.resuscitation.2016.03.023.
    1. Hope Kilgannon J., Hunter B.R., Puskarich M.A., et al. Partial pressure of arterial carbon dioxide after resuscitation from cardiac arrest and neurological outcome: a prospective multi-center protocol-directed cohort study. Resuscitation. 2019;135:212–220. doi: 10.1016/j.resuscitation.2018.11.015.
    1. Roberts B.W., Kilgannon J.H., Chansky M.E., Mittal N., Wooden J., Trzeciak S. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127:2107–2113. doi: 10.1161/CIRCULATIONAHA.112.000168.
    1. Ebner F., Harmon M.B.A., Aneman A., et al. Carbon dioxide dynamics in relation to neurological outcome in resuscitated out-of-hospital cardiac arrest patients: an exploratory Target Temperature Management Trial substudy. Crit Care. 2018;22:196. doi: 10.1186/s13054-018-2119-5.
    1. Ameloot K., De Deyne C., Eertmans W., et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial. Eur Heart J. 2019;40:1804–1814. doi: 10.1093/eurheartj/ehz120.
    1. Mentzelopoulos S.D., Malachias S., Chamos C., et al. Vasopressin, steroids, and epinephrine and neurologically favorable survival after in-hospital cardiac arrest: a randomized clinical trial. JAMA. 2013;310:270–279. doi: 10.1001/jama.2013.7832.
    1. Mentzelopoulos S.D., Zakynthinos S.G., Tzoufi M., et al. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch Intern Med. 2009;169:15–24. doi: 10.1001/archinternmed.2008.509.
    1. Donnino M.W., Andersen L.W., Berg K.M., et al. Corticosteroid therapy in refractory shock following cardiac arrest: a randomized, double-blind, placebo-controlled, trial. Crit Care. 2016;20:82. doi: 10.1186/s13054-016-1257-x.
    1. Nielsen N., Wetterslev J., Cronberg T., et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369:2197–2206. doi: 10.1056/NEJMoa1310519.
    1. François B., Cariou A., Clere-Jehl R., et al. Prevention of early ventilator-associated pneumonia after cardiac arrest. N Engl J Med. 2019;381:1831–1842. doi: 10.1056/NEJMoa1812379.
    1. Couper K., Laloo R., Field R., Perkins G.D., Thomas M., Yeung J. Prophylactic antibiotic use following cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2019;141:166–173. doi: 10.1016/j.resuscitation.2019.04.047.
    1. Schünemann H.J., Wiercioch W., Brozek J., et al. GRADE Evidence to Decision (EtD) frameworks for adoption, adaptation, and de novo development of trustworthy recommendations: GRADE-ADOLOPMENT. J Clin Epidemiol. 2017;81:101–110. doi: 10.1016/j.jclinepi.2016.09.009.
    1. Ribaric S.F., Turel M., Knafelj R., et al. Prophylactic versus clinically-driven antibiotics in comatose survivors of out-of-hospital cardiac arrest — a randomized pilot study. Resuscitation. 2017;111:103–109. doi: 10.1016/j.resuscitation.2016.11.025.
    1. Tagami T., Matsui H., Kuno M., et al. Early antibiotics administration during targeted temperature management after out-of-hospital cardiac arrest: a nationwide database study. BMC Anesthesiol. 2016;16:89. doi: 10.1186/s12871-016-0257-3.
    1. Davies K.J., Walters J.H., Kerslake I.M., Greenwood R., Thomas M.J. Early antibiotics improve survival following out-of hospital cardiac arrest. Resuscitation. 2013;84:616–619. doi: 10.1016/j.resuscitation.2012.11.004.
    1. Perbet S., Mongardon N., Dumas F., et al. Early-onset pneumonia after cardiac arrest: characteristics, risk factors and influence on prognosis. Am J Respir Crit Care Med. 2011;184:1048–1054. doi: 10.1164/rccm.201102-0331OC.
    1. Lybeck A., Friberg H., Aneman A., et al. Prognostic significance of clinical seizures after cardiac arrest and target temperature management. Resuscitation. 2017;114:146–151. doi: 10.1016/j.resuscitation.2017.01.017.
    1. Seder D.B., Sunde K., Rubertsson S., et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43:965–972. doi: 10.1097/ccm.0000000000000880.
    1. Backman S., Westhall E., Dragancea I., et al. Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clin Neurophysiol. 2017;128:681–688. doi: 10.1016/j.clinph.2017.01.002.
    1. Beretta S., Coppo A., Bianchi E., et al. Neurologic outcome of postanoxic refractory status epilepticus after aggressive treatment. Neurology. 2018;91:e2153–e2162. doi: 10.1212/WNL.0000000000006615.
    1. Longstreth W.T., Jr, Fahrenbruch C.E., Olsufka M., Walsh T.R., Copass M.K., Cobb L.A. Randomized clinical trial of magnesium, diazepam, or both after out-of-hospital cardiac arrest. Neurology. 2002;59:506–514. doi: 10.1212/wnl.59.4.506.
    1. Brain Resuscitation Clinical Trial I Study Group Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. New Engl J Med. 1986;314:397–403. doi: 10.1056/nejm198602133140701.
    1. Monsalve F., Rucabado L., Ruano M., Cuñat J., Lacueva V., Viñuales A. The neurologic effects of thiopental therapy after cardiac arrest. Intensive Care Med. 1987;13:244–248. doi: 10.1007/BF00265112.
    1. Thömke F., Weilemann S.L. Poor prognosis despite successful treatment of postanoxic generalized myoclonus. Neurology. 2010;74:1392–1394. doi: 10.1212/WNL.0b013e3181dad5b9.
    1. Koutroumanidis M., Sakellariou D. Low frequency nonevolving generalized periodic epileptiform discharges and the borderland of hypoxic nonconvulsive status epilepticus in comatose patients after cardiac arrest. Epilepsy Behav. 2015;49:255–262. doi: 10.1016/j.yebeh.2015.04.060.
    1. Aicua R.I., Rapun I., Novy J., Solari D., Oddo M., Rossetti A.O. Early Lance-Adams syndrome after cardiac arrest: prevalence, time to return to awareness, and outcome in a large cohort. Resuscitation. 2017;115:169–172. doi: 10.1016/j.resuscitation.2017.03.020.
    1. Solanki P., Coppler P.J., Kvaløy J.T., et al. Association of antiepileptic drugs with resolution of epileptiform activity after cardiac arrest. Resuscitation. 2019;142:82–90. doi: 10.1016/j.resuscitation.2019.07.007.
    1. Kapur J., Elm J., Chamberlain J.M., et al. Randomized trial of three anticonvulsant medications for status epilepticus. N Engl J Med. 2019;381:2103–2113. doi: 10.1056/NEJMoa1905795.
    1. Elmer J., Rittenberger J.C., Faro J., et al. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80:175–184. doi: 10.1002/ana.24697.
    1. Crepeau A.Z., Fugate J.E., Mandrekar J., et al. Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest. Resuscitation. 2014;85:785–789. doi: 10.1016/j.resuscitation.2014.01.019.
    1. Sondag L., Ruijter B.J., Tjepkema-Cloostermans M.C., et al. Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis. Crit Care. 2017;21:111. doi: 10.1186/s13054-017-1693-2.
    1. Donnino M.W., Andersen L.W., Berg K.M., et al. Temperature Management After Cardiac Arrest: An Advisory Statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Resuscitation. 2016;98:97–104. doi: 10.1016/j.resuscitation.2015.09.396.
    1. Donnino M.W., Andersen L.W., Berg K.M., et al. Temperature Management After Cardiac Arrest: An Advisory Statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation. 2015;132:2448–2456. doi: 10.1161/CIR.0000000000000313.
    1. Lascarrou J.B., Merdji H., Le Gouge A., et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381:2327–2337. doi: 10.1056/NEJMoa1906661.
    1. Sandroni C., D’Arrigo S., Cacciola S., et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06198-w. Published online ahead of print September 11.
    1. Steinberg A., Callaway C.W., Arnold R.M., et al. Prognostication after cardiac arrest: Results of an international, multi-professional survey. Resuscitation. 2019;138:190–197. doi: 10.1016/j.resuscitation.2019.03.016.
    1. Ryoo S.M., Jeon S.B., Sohn C.H., et al. Predicting outcome with diffusion-weighted imaging in cardiac arrest patients receiving hypothermia therapy: multicenter retrospective cohort study. Crit Care Med. 2015;43:2370–2377. doi: 10.1097/CCM.0000000000001263.
    1. Scarpino M., Lolli F., Lanzo G., et al. Neurophysiological and neuroradiological test for early poor outcome (Cerebral Performance Categories 3-5) prediction after cardiac arrest: Prospective multicentre prognostication data. Data Brief. 2019;27 doi: 10.1016/j.dib.2019.104755.
    1. Kongpolprom N., Cholkraisuwat J. Neurological prognostications for the therapeutic hypothermia among comatose survivors of cardiac arrest. Indian J Crit Care Med. 2018;22:509–518. doi: 10.4103/ijccm.IJCCM_500_17.
    1. Roger C., Palmier L., Louart B., et al. Neuron specific enolase and Glasgow motor score remain useful tools for assessing neurological prognosis after out-of-hospital cardiac arrest treated with therapeutic hypothermia. Anaesth Crit Care Pain Med. 2015;34:231–237. doi: 10.1016/j.accpm.2015.05.004.
    1. Zhou S.E., Maciel C.B., Ormseth C.H., Beekman R., Gilmore E.J., Greer D.M. Distinct predictive values of current neuroprognostic guidelines in post-cardiac arrest patients. Resuscitation. 2019;139:343–350. doi: 10.1016/j.resuscitation.2019.03.035.
    1. Lee K.S., Lee S.E., Choi J.Y., et al. Useful computed tomography score for estimation of early neurologic outcome in post-cardiac arrest patients with therapeutic hypothermia. Circ J. 2017;81:1628–1635. doi: 10.1253/circj.CJ-16-1327.
    1. Matthews E.A., Magid-Bernstein J., Sobczak E., et al. Prognostic value of the neurological examination in cardiac arrest patients after therapeutic hypothermia. Neurohospitalist. 2018;8:66–73. doi: 10.1177/1941874417733217.
    1. Choi S.P., Park K.N., Wee J.H., et al. Can somatosensory and visual evoked potentials predict neurological outcome during targeted temperature management in post cardiac arrest patients? Resuscitation. 2017;119:70–75. doi: 10.1016/j.resuscitation.2017.06.022.
    1. Chung-Esaki H.M., Mui G., Mlynash M., Eyngorn I., Catabay K., Hirsch K.G. The neuron specific enolase (NSE) ratio offers benefits over absolute value thresholds in post-cardiac arrest coma prognosis. J Clin Neurosci. 2018;57:99–104. doi: 10.1016/j.jocn.2018.08.020.
    1. Javaudin F., Leclere B., Segard J., et al. Prognostic performance of early absence of pupillary light reaction after recovery of out of hospital cardiac arrest. Resuscitation. 2018;127:8–13. doi: 10.1016/j.resuscitation.2018.03.020.
    1. Dhakal L.P., Sen A., Stanko C.M., et al. Early absent pupillary light reflexes after cardiac arrest in patients treated with therapeutic hypothermia. Ther Hypothermia Temp Manag. 2016;6:116–121. doi: 10.1089/ther.2015.0035.
    1. Oddo M., Sandroni C., Citerio G., et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study. Intensive Care Med. 2018;44:2102–2111. doi: 10.1007/s00134-018-5448-6.
    1. Fatuzzo D., Beuchat I., Alvarez V., Novy J., Oddo M., Rossetti A.O. Does continuous EEG influence prognosis in patients after cardiac arrest? Resuscitation. 2018;132:29–32. doi: 10.1016/j.resuscitation.2018.08.023.
    1. Dragancea I., Horn J., Kuiper M., et al. Neurological prognostication after cardiac arrest and targeted temperature management 33°C versus 36°C: results from a randomised controlled clinical trial. Resuscitation. 2015;93:164–170. doi: 10.1016/j.resuscitation.2015.04.013.
    1. Hofmeijer J., Beernink T.M., Bosch F.H., Beishuizen A., Tjepkema-Cloostermans M.C., van Putten M.J. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85:137–143. doi: 10.1212/WNL.0000000000001742.
    1. Greer D.M., Yang J., Scripko P.D., et al. Clinical examination for prognostication in comatose cardiac arrest patients. Resuscitation. 2013;84:1546–1551. doi: 10.1016/j.resuscitation.2013.07.028.
    1. Kim J.H., Kim M.J., You J.S., et al. Multimodal approach for neurologic prognostication of out-of-hospital cardiac arrest patients undergoing targeted temperature management. Resuscitation. 2019;134:33–40. doi: 10.1016/j.resuscitation.2018.11.007.
    1. Solari D., Rossetti A.O., Carteron L., et al. Early prediction of coma recovery after cardiac arrest with blinded pupillometry. Ann Neurol. 2017;81:804–810. doi: 10.1002/ana.24943.
    1. Heimburger D., Durand M., Gaide-Chevronnay L., et al. Quantitative pupillometry and transcranial Doppler measurements in patients treated with hypothermia after cardiac arrest. Resuscitation. 2016;103:88–93. doi: 10.1016/j.resuscitation.2016.02.026.
    1. Riker R.R., Sawyer M.E., Fischman V.G., et al. Neurological pupil index and pupillary light reflex by pupillometry predict outcome early after cardiac arrest. Neurocrit Care. 2020;32:152–161. doi: 10.1007/s12028-019-00717-4.
    1. Obling L., Hassager C., Illum C., et al. Prognostic value of automated pupillometry: an unselected cohort from a cardiac intensive care unit. Eur Heart J Acute Cardiovasc Care. 2019 doi: 10.1177/2048872619842004.
    1. Sivaraju A., Gilmore E.J., Wira C.R., et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41:1264–1272. doi: 10.1007/s00134-015-3834-x.
    1. Sadaka F., Doerr D., Hindia J., Lee K.P., Logan W. Continuous electroencephalogram in comatose postcardiac arrest syndrome patients treated with therapeutic hypothermia: outcome prediction study. J Intensive Care Med. 2015;30:292–296. doi: 10.1177/0885066613517214.
    1. Maia B., Roque R., Amaral-Silva A., Lourenço S., Bento L., Alcântara J. Predicting outcome after cardiopulmonary arrest in therapeutic hypothermia patients: clinical, electrophysiological and imaging prognosticators. Acta Med Port. 2013;26:93–97.
    1. Reynolds A.S., Rohaut B., Holmes M.G., et al. Early myoclonus following anoxic brain injury. Neurol Clin Pract. 2018;8:249–256. doi: 10.1212/CPJ.0000000000000466.
    1. Ruknuddeen M.I., Ramadoss R., Rajajee V., Grzeskowiak L.E., Rajagopalan R.E. Early clinical prediction of neurological outcome following out of hospital cardiac arrest managed with therapeutic hypothermia. Indian J Crit Care Med. 2015;19:304–310. doi: 10.4103/0972-5229.158256.
    1. Maciel C.B., Morawo A.O., Tsao C.Y., et al. SSEP in therapeutic hypothermia era. J Clin Neurophysiol. 2017;34:469–475. doi: 10.1097/WNP.0000000000000392.
    1. Leão R.N., Ávila P., Cavaco R., Germano N., Bento L. Therapeutic hypothermia after cardiac arrest: outcome predictors. Rev Bras Ter Intensiva. 2015;27:322–332. doi: 10.5935/0103-507X.20150056.
    1. Ruijter B.J., Tjepkema-Cloostermans M.C., Tromp S.C., et al. Early electroencephalography for outcome prediction of postanoxic coma: a prospective cohort study. Ann Neurol. 2019;86:203–214. doi: 10.1002/ana.25518.
    1. Kim S.W., Oh J.S., Park J., et al. Short-latency positive peak following n20 somatosensory evoked potential is superior to n20 in predicting neurologic outcome after out-of-hospital cardiac arrest. Crit Care Med. 2018;46:e545–e551. doi: 10.1097/CCM.0000000000003083.
    1. Scarpino M., Carrai R., Lolli F., et al. Neurophysiology for predicting good and poor neurological outcome at 12 and 72 h after cardiac arrest: the ProNeCA multicentre prospective study. Resuscitation. 2020;147:95–103. doi: 10.1016/j.resuscitation.2019.11.014.
    1. Grippo A., Carrai R., Scarpino M., et al. Neurophysiological prediction of neurological good and poor outcome in post-anoxic coma. Acta Neurol Scand. 2017;135:641–648. doi: 10.1111/ane.12659.
    1. De Santis P., Lamanna I., Mavroudakis N., et al. The potential role of auditory evoked potentials to assess prognosis in comatose survivors from cardiac arrest. Resuscitation. 2017;120:119–124. doi: 10.1016/j.resuscitation.2017.09.013.
    1. Westhall E., Rossetti A.O., van Rootselaar A.F., et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86:1482–1490. doi: 10.1212/WNL.0000000000002462.
    1. Admiraal M.M., van Rootselaar A.F., Hofmeijer J., et al. Electroencephalographic reactivity as predictor of neurological outcome in postanoxic coma: a multicenter prospective cohort study. Ann Neurol. 2019;86:17–27. doi: 10.1002/ana.25507.
    1. Alvarez V., Reinsberger C., Scirica B., et al. Continuous electrodermal activity as a potential novel neurophysiological biomarker of prognosis after cardiac arrest — a pilot study. Resuscitation. 2015;93:128–135. doi: 10.1016/j.resuscitation.2015.06.006.
    1. Duez C.H.V., Johnsen B., Ebbesen M.Q., et al. Post resuscitation prognostication by EEG in 24 vs 48 h of targeted temperature management. Resuscitation. 2019;135:145–152. doi: 10.1016/j.resuscitation.2018.10.035.
    1. Liu G., Su Y., Liu Y., et al. Predicting outcome in comatose patients: the role of EEG reactivity to quantifiable electrical stimuli. Evid Based Complement Alternat Med. 2016;2016 doi: 10.1155/2016/8273716.
    1. Amorim E., Rittenberger J.C., Zheng J.J., et al. Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury. Resuscitation. 2016;109:121–126. doi: 10.1016/j.resuscitation.2016.08.012.
    1. Benarous L., Gavaret M., Soda Diop M., et al. Sources of interrater variability and prognostic value of standardized EEG features in post-anoxic coma after resuscitated cardiac arrest. Clin Neurophysiol Pract. 2019;4:20–26. doi: 10.1016/j.cnp.2018.12.001.
    1. Lamartine Monteiro M., Taccone F.S., Depondt C., et al. The prognostic value of 48-h continuous EEG during therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2016;24:153–162. doi: 10.1007/s12028-015-0215-9.
    1. Rossetti A.O., Tovar Quiroga D.F., Juan E., et al. Electroencephalography predicts poor and good outcomes after cardiac arrest: a two-center study. Crit Care Med. 2017;45:e674–e682. doi: 10.1097/CCM.0000000000002337.
    1. Backman S., Cronberg T., Friberg H., et al. Highly malignant routine EEG predicts poor prognosis after cardiac arrest in the Target Temperature Management trial. Resuscitation. 2018;131:24–28. doi: 10.1016/j.resuscitation.2018.07.024.
    1. Beretta S., Coppo A., Bianchi E., et al. Neurological outcome of postanoxic refractory status epilepticus after aggressive treatment. Epilepsy Behav. 2019;101 doi: 10.1016/j.yebeh.2019.06.018.
    1. Oh S.H., Park K.N., Shon Y.M., et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation. 2015;132:1094–1103. doi: 10.1161/CIRCULATIONAHA.115.015754.
    1. Dragancea I., Backman S., Westhall E., Rundgren M., Friberg H., Cronberg T. Outcome following postanoxic status epilepticus in patients with targeted temperature management after cardiac arrest. Epilepsy Behav. 2015;49:173–177. doi: 10.1016/j.yebeh.2015.04.043.
    1. Hirsch L.J., LaRoche S.M., Gaspard N., et al. American clinical neurophysiology society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30:1–27. doi: 10.1097/WNP.0b013e3182784729.
    1. Admiraal M.M., van Rootselaar A.F., Horn J. International consensus on EEG reactivity testing after cardiac arrest: towards standardization. Resuscitation. 2018;131:36–41. doi: 10.1016/j.resuscitation.2018.07.025.
    1. Zellner T., Gärtner R., Schopohl J., Angstwurm M. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest. Resuscitation. 2013;84:1382–1386. doi: 10.1016/j.resuscitation.2013.03.021.
    1. Lee B.K., Jeung K.W., Lee H.Y., Jung Y.H., Lee D.H. Combining brain computed tomography and serum neuron specific enolase improves the prognostic performance compared to either alone in comatose cardiac arrest survivors treated with therapeutic hypothermia. Resuscitation. 2013;84:1387–1392. doi: 10.1016/j.resuscitation.2013.05.026.
    1. Vondrakova D., Kruger A., Janotka M., et al. Association of neuron-specific enolase values with outcomes in cardiac arrest survivors is dependent on the time of sample collection. Crit Care. 2017;21:172. doi: 10.1186/s13054-017-1766-2.
    1. Stammet P., Collignon O., Hassager C., et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33°C and 36°C. J Am Coll Cardiol. 2015;65:2104–2114. doi: 10.1016/j.jacc.2015.03.538.
    1. Tsetsou S., Novy J., Pfeiffer C., Oddo M., Rossetti A.O. Multimodal outcome prognostication after cardiac arrest and targeted temperature management: analysis at 36 °C. Neurocrit Care. 2018;28:104–109. doi: 10.1007/s12028-017-0393-8.
    1. Duez C.H.V., Grejs A.M., Jeppesen A.N., et al. Neuron-specific enolase and S-100b in prolonged targeted temperature management after cardiac arrest: a randomised study. Resuscitation. 2018;122:79–86. doi: 10.1016/j.resuscitation.2017.11.052.
    1. Helwig K., Seeger F., Hölschermann H., et al. Elevated serum glial fibrillary acidic protein (GFAP) is associated with poor functional outcome after cardiopulmonary resuscitation. Neurocrit Care. 2017;27:68–74. doi: 10.1007/s12028-016-0371-6.
    1. Stammet P., Dankiewicz J., Nielsen N., et al. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. Crit Care. 2017;21:153. doi: 10.1186/s13054-017-1729-7.
    1. Jang J.H., Park W.B., Lim Y.S., et al. Combination of S100B and procalcitonin improves prognostic performance compared to either alone in patients with cardiac arrest: a prospective observational study. Medicine (Baltimore) 2019;98 doi: 10.1097/MD.0000000000014496.
    1. Mattsson N., Zetterberg H., Nielsen N., et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol. 2017;82:665–675. doi: 10.1002/ana.25067.
    1. Moseby-Knappe M., Mattsson N., Nielsen N., et al. Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol. 2019;76:64–71. doi: 10.1001/jamaneurol.2018.3223.
    1. Rana O.R., Schröder J.W., Baukloh J.K., et al. Neurofilament light chain as an early and sensitive predictor of long-term neurological outcome in patients after cardiac arrest. Int J Cardiol. 2013;168:1322–1327. doi: 10.1016/j.ijcard.2012.12.016.
    1. Wang G.N., Chen X.F., Lv J.R., Sun N.N., Xu X.Q., Zhang J.S. The prognostic value of gray-white matter ratio on brain computed tomography in adult comatose cardiac arrest survivors. J Chin Med Assoc. 2018;81:599–604. doi: 10.1016/j.jcma.2018.03.003.
    1. Youn C.S., Callaway C.W., Rittenberger J.C., Post Cardiac Arrest Service Combination of initial neurologic examination, quantitative brain imaging and electroencephalography to predict outcome after cardiac arrest. Resuscitation. 2017;110:120–125. doi: 10.1016/j.resuscitation.2016.10.024.
    1. Jeon C.H., Park J.S., Lee J.H., et al. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors. Resuscitation. 2017;118:21–26. doi: 10.1016/j.resuscitation.2017.06.021.
    1. Kim S.H., Choi S.P., Park K.N., et al. Early brain computed tomography findings are associated with outcome in patients treated with therapeutic hypothermia after out-of-hospital cardiac arrest. Scand J Trauma Resusc Emerg Med. 2013;21:57. doi: 10.1186/1757-7241-21-57.
    1. Kim Y., Ho L.J., Kun H.C., et al. Feasibility of optic nerve sheath diameter measured on initial brain computed tomography as an early neurologic outcome predictor after cardiac arrest. Acad Emerg Med. 2014;21:1121–1128.
    1. Kim S.J., Jung J.S., Park J.H., Park J.S., Hong Y.S., Lee S.W. An optimal transition time to extracorporeal cardiopulmonary resuscitation for predicting good neurological outcome in patients with out-of-hospital cardiac arrest: a propensity-matched study. Crit Care. 2014;18:535. doi: 10.1186/s13054-014-0535-8.
    1. Scarpino M., Lanzo G., Lolli F., et al. Neurophysiological and neuroradiological multimodal approach for early poor outcome prediction after cardiac arrest. Resuscitation. 2018;129:114–120. doi: 10.1016/j.resuscitation.2018.04.016.
    1. Lee D.H., Lee B.K., Jeung K.W., et al. Relationship between ventricular characteristics on brain computed tomography and 6-month neurologic outcome in cardiac arrest survivors who underwent targeted temperature management. Resuscitation. 2018;129:37–42. doi: 10.1016/j.resuscitation.2018.06.008.
    1. Lee B.K., Jeung K.W., Song K.H., et al. Prognostic values of gray matter to white matter ratios on early brain computed tomography in adult comatose patients after out-of-hospital cardiac arrest of cardiac etiology. Resuscitation. 2015;96:46–52. doi: 10.1016/j.resuscitation.2015.07.027.
    1. Lee B.K., Kim W.Y., Shin J., et al. Prognostic value of gray matter to white matter ratio in hypoxic and non-hypoxic cardiac arrest with non-cardiac etiology. Am J Emerg Med. 2016;34:1583–1588. doi: 10.1016/j.ajem.2016.05.063.
    1. Greer D.M., Scripko P.D., Wu O., et al. Hippocampal magnetic resonance imaging abnormalities in cardiac arrest are associated with poor outcome. J Stroke Cerebrovasc Dis. 2013;22:899–905. doi: 10.1016/j.jstrokecerebrovasdis.2012.08.006.
    1. Jang J., Oh S.H., Nam Y., et al. Prognostic value of phase information of 2D T2*-weighted gradient echo brain imaging in cardiac arrest survivors: a preliminary study. Resuscitation. 2019;140:142–149. doi: 10.1016/j.resuscitation.2019.05.026.
    2. Kim J., Kim K., Hong S., et al. Low apparent diffusion coefficient cluster-based analysis of diffusion-weighted MRI for prognostication of out-of-hospital cardiac arrest survivors. Resuscitation. 2013;84:1393–1399. doi: 10.1016/j.resuscitation.2013.04.01.
    1. Moon H.K., Jang J., Park K.N., et al. Quantitative analysis of relative volume of low apparent diffusion coefficient value can predict neurologic outcome after cardiac arrest. Resuscitation. 2018;126:36–42. doi: 10.1016/j.resuscitation.2018.02.020.
    1. Nikolaou N.I., Welsford M., Beygui F., et al. Part 5: acute coronary syndromes: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2015;95:e121–e146. doi: 10.1016/j.resuscitation.2015.07.043.
    1. Welsford M., Nikolaou N.I., Beygui F., et al. Part 5: acute coronary syndromes: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132:S146–S176. doi: 10.1161/CIR.0000000000000274.

Source: PubMed

3
Subskrybuj