Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury

Zhengjian Wang, Fan Li, Jin Liu, Yalan Luo, Haoya Guo, Qi Yang, Caiming Xu, Shurong Ma, Hailong Chen, Zhengjian Wang, Fan Li, Jin Liu, Yalan Luo, Haoya Guo, Qi Yang, Caiming Xu, Shurong Ma, Hailong Chen

Abstract

Severe acute pancreatitis (SAP), one of the most serious abdominal emergencies in general surgery, is characterized by acute and rapid onset as well as high mortality, which often leads to multiple organ failure (MOF). Acute lung injury (ALI), the earliest accompanied organ dysfunction, is the most common cause of death in patients following the SAP onset. The exact pathogenesis of ALI during SAP, however, remains unclear. In recent years, advances in the microbiota-gut-lung axis have led to a better understanding of SAP-associated lung injury (PALI). In addition, the bidirectional communications between intestinal microbes and the lung are becoming more apparent. This paper aims to review the mechanisms of an imbalanced intestinal microbiota contributing to the development of PALI, which is mediated by the disruption of physical, chemical, and immune barriers in the intestine, promotes bacterial translocation, and results in the activation of abnormal immune responses in severe pancreatitis. The pathogen-associated molecular patterns (PAMPs) mediated immunol mechanisms in the occurrence of PALI via binding with pattern recognition receptors (PRRs) through the microbiota-gut-lung axis are focused in this study. Moreover, the potential therapeutic strategies for alleviating PALI by regulating the composition or the function of the intestinal microbiota are discussed in this review. The aim of this study is to provide new ideas and therapeutic tools for PALI patients.

Keywords: bacterial translocation; immune imbalance; intestinal microbiota; microbiota-gut-lung axis; pathogen-associated molecular patterns; severe acute pancreatitis-associated lung injury.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wang, Li, Liu, Luo, Guo, Yang, Xu, Ma and Chen.

Figures

Figure 1
Figure 1
An overview of intestinal microbiota dysbiosis in PALI. DAMPs, damage-associated molecular patterns; PALI, severe acute pancreatitis-associated acute lung injury; PAMPs, pathogen-associated molecular patterns.
Figure 2
Figure 2
The mechanisms of intestinal barrier disruption mediated by intestinal bacterial dysbiosis. The increase of intestinal pathogenic bacteria and the decrease of commensal metabolites in severe acute pancreatitis (SAP) jointly lead to the thinning of the intestinal mucus layer and the decrease of antimicrobial peptides (AMPs), mucin2 (MUC2), and IgA (SIgA) secretion, resulting in direct contact of pathogenic bacteria with the intestinal epithelial cells (IECs) and an “inflammatory storm”. The abnormal immune responses further lead to IEC damage, slow renewal, and disruption of the tight junctions (TJs) in epithelial cells, further stimulating excessive pro-inflammatory factors on the intestinal mucosal immune system. Finally, the integrity of the intestinal barrier is destroyed, bacteria and products translocate to the lungs, and then PALI ensues.
Figure 3
Figure 3
Pathways of intestinal bacterial translocation. Intestinal pathogenic bacteria, PAMPs, and metabolites translocate to the lung via lymphatic route and blood circulatory system.
Figure 4
Figure 4
The pathogenesis of intestinal microbiota dysbiosis caused acute lung injury (ALI). Briefly, the intestinal pathogenic bacteria and harmful metabolites are translocated to the lung and recognized by pulmonary innate immune cells (AECs, AMs, DCs, and NK cells). Then, the release of persistent pro-inflammatory cytokines is induced by binding to their pattern recognition receptors (PRRs) on the cell surface, causing an “inflammatory storm”. A large number of neutrophil cells aggregate in the alveoli and neutrophil extracellular trap network (NETs) lead to increased release of neutrophil elastase (NE), myeloperoxidase (MPO), and histone. The inflammatory factors, granulins, and infiltrated red blood cells from vascular cause the damage and hemorrhage of lung tissue. Subsequently, the lung tissue initiates the immune responses of damage-associated molecular patterns (DAMPs), causing increased release of high mobility group protein B1 (HMGB1), the abnormal polarization of M1-type macrophages, and release of NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Finally, lung tissue initiates an adaptive immune response, and increased production of pro-inflammatory Th1 and Th17 immune cells and suppression of Tregs cells could be observed, resulting in the paralysis of the immune system and irreversible ALI. AECs, alveolar epithelial cells; AMs, alveolar macrophages; DCs, dendritic cells; ASC, Apoptosis-associated speck-like protein containing a caspase recruit domain; SIgA, secretory IgA.
Figure 5
Figure 5
Comparison of M1-type macrophages and M2-type macrophages, in terms of stimulatory factors, transcription factors, released mediators, and functional properties during the process of PALI. AP-1, activating protein-1; ARG1, arginase 1; CMyC, transcription factor CMyC; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN-γ, interferon γ; IRF, interferon regulatory factor; KLF-4, krüppel-like factor 4; LPS, lipopolysaccharide; NF-κB, nuclear transcription factor κB; ROS, reactive oxygen species; STAT, signal transduction and activation of transcription factor; TGF-β, transforming growth factor ß; VEGF, vascular endothelial growth factor.
Figure 6
Figure 6
Possible mechanisms of probiotics supplementation on PALI recovery. Probiotics can restore the function of the intestinal barrier by inhibiting the proliferation of pathogenic bacteria, increasing the production of 3-hydroxyoctadecenoic acid (C18-3OH), short-chain fatty acids (SCFAs), antimicrobial peptides (AMPs), mucin2 (MUC2), and secretory IgA (SIgA), and regulating the expression of tight junction (TJ) proteins. In addition, probiotics have the capacity to reduce the neutrophil infiltration and release of inflammatory cytokines, maintain the balance of the intestinal immune system, and reduce the translocation of bacteria, inflammatory factors, etc., resulting in the alleviation of PALI.

References

    1. Kong L, Deng J, Zhou X, Cai B, Zhang B, Chen X, et al. . Sitagliptin Activates the P62-Keap1-Nrf2 Signalling Pathway to Alleviate Oxidative Stress and Excessive Autophagy in Severe Acute Pancreatitis-Related Acute Lung Injury. Cell Death Dis (2021) 12(10):928. doi: 10.1038/s41419-021-04227-0
    1. Jin M, Zhang H, Wu M, Wang Z, Chen X, Guo M, et al. . Colonic Interleukin-22 Protects Intestinal Mucosal Barrier and Microbiota Abundance in Severe Acute Pancreatitis. FASEB J (2022) 36(3):e22174. doi: 10.1096/fj.202101371R
    1. Wu J, Zhang J, Zhao J, Chen S, Zhou T, Xu J. Treatment of Severe Acute Pancreatitis and Related Lung Injury by Targeting Gasdermin D-Mediated Pyroptosis. Front Cell Dev Biol (2021) 9:780142. doi: 10.3389/fcell.2021.780142
    1. Zhou J, Zhou P, Zhang Y, Wang G, Fan Z. Signal Pathways and Markers Involved in Acute Lung Injury Induced by Acute Pancreatitis. Dis Markers (2021) 2021:9947047. doi: 10.1155/2021/9947047
    1. Xu C, Zhang J, Liu J, Li Z, Liu Z, Luo Y, et al. . Proteomic Analysis Reveals the Protective Effects of Emodin on Severe Acute Pancreatitis Induced Lung Injury by Inhibiting Neutrophil Proteases Activity. J Proteomics (2020) 220:103760. doi: 10.1016/j.jprot.2020.103760
    1. Ye W, Zheng C, Yu D, Zhang F, Pan R, Ni X, et al. . Lipoxin A4 Ameliorates Acute Pancreatitis-Associated Acute Lung Injury Through the Antioxidative and Anti-Inflammatory Effects of the Nrf2 Pathway. Oxid Med Cell Longev (2019) 2019:2197017. doi: 10.1155/2019/2197017
    1. Liang XY, Jia TX, Zhang M. Intestinal Bacterial Overgrowth in the Early Stage of Severe Acute Pancreatitis Is Associated With Acute Respiratory Distress Syndrome. World J Gastroenterol (2021) 27(15):1643–54. doi: 10.3748/wjg.v27.i15.1643
    1. Ge P, Luo Y, Okoye CS, Chen H, Liu J, Zhang G, et al. . Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. BioMed Pharmacother (2020) 132:110770. doi: 10.1016/j.biopha.2020.110770
    1. Yang J, Wei H, Zhou Y, Szeto CH, Li C, Lin Y, et al. . High-Fat Diet Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites. Gastroenterology (2022) 162(1):135–49.e2. doi: 10.1053/j.gastro.2021.08.041
    1. Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, et al. . The Microbiota-Gut-Brain Axis: Pathways to Better Brain Health. Perspectives on What We Know, What We Need to Investigate and How to Put Knowledge Into Practice. Cell Mol Life Sci (2022) 79(2):80. doi: 10.1007/s00018-021-04060-w
    1. Piao X, Liu B, Sui X, Li S, Niu W, Zhang Q, et al. . Picroside II Improves Severe Acute Pancreatitis-Induced Intestinal Barrier Injury by Inactivating Oxidative and Inflammatory TLR4-Dependent PI3K/AKT/NF-κb Signaling and Improving Gut Microbiota. Oxid Med Cell Longev (2020) 2020:3589497. doi: 10.1155/2020/3589497
    1. Dixit K, Chaudhari D, Dhotre D, Shouche Y, Saroj S. Restoration of Dysbiotic Human Gut Microbiome for Homeostasis. Life Sci (2021) 278:119622. doi: 10.1016/j.lfs.2021.119622
    1. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut Microbiome and Health: Mechanistic Insights. Gut (2022) 71(5):1020–32. doi: 10.1136/gutjnl-2021-326789
    1. Ye S, Si C, Deng J, Chen X, Kong L, Zhou X, et al. . Understanding the Effects of Metabolites on the Gut Microbiome and Severe Acute Pancreatitis. BioMed Res Int (2021) 2021:1516855. doi: 10.1155/2021/1516855
    1. Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary Delivery of siRNA Against Acute Lung Injury/Acute Respiratory Distress Syndrome. Acta Pharm Sin B (2021) 12(2):600–20. doi: 10.1016/j.apsb.2021.08.009
    1. Hu X, Gong L, Zhou R, Han Z, Ji L, Zhang Y, et al. . Variations in Gut Microbiome Are Associated With Prognosis of Hypertriglyceridemia-Associated Acute Pancreatitis. Biomolecules (2021) 11(5):695. doi: 10.3390/biom11050695
    1. Yu S, Xiong Y, Fu Y, Chen G, Zhu H, Mo X, et al. . Shotgun Metagenomics Reveals Significant Gut Microbiome Features in Different Grades of Acute Pancreatitis. Microb Pathog (2021) 154:104849. doi: 10.1016/j.micpath.2021.104849
    1. Yu S, Xiong Y, Xu J, Liang X, Fu Y, Liu D, et al. . Identification of Dysfunctional Gut Microbiota Through Rectal Swab in Patients With Different Severity of Acute Pancreatitis. Dig Dis Sci (2020) 65(11):3223–37. doi: 10.1007/s10620-020-06061-4
    1. Li Q, Wang C, Tang C, Zhao X, He Q, Li J. Identification and Characterization of Blood and Neutrophil-Associated Microbiomes in Patients With Severe Acute Pancreatitis Using Next-Generation Sequencing. Front Cell Infect Microbiol (2018) 8:5. doi: 10.3389/fcimb.2018.00005
    1. van den Berg FF, van Dalen D, Hyoju SK, van Santvoort HC, Besselink MG, Wiersinga WJ, et al. . Western-Type Diet Influences Mortality From Necrotising Pancreatitis and Demonstrates a Central Role for Butyrate. Gut (2021) 70(5):915–27. doi: 10.1136/gutjnl-2019-320430
    1. Mei QX, Hu JH, Huang ZH, Fan JJ, Huang CL, Lu YY, et al. . Pretreatment With Chitosan Oligosaccharides Attenuate Experimental Severe Acute Pancreatitis via Inhibiting Oxidative Stress and Modulating Intestinal Homeostasis. Acta Pharmacol Sin (2021) 42(6):942–53. doi: 10.1038/s41401-020-00581-5
    1. Zhu Y, He C, Li X, Cai Y, Hu J, Liao Y, et al. . Gut Microbiota Dysbiosis Worsens the Severity of Acute Pancreatitis in Patients and Mice. J Gastroenterol (2019) 54(4):347–58. doi: 10.1007/s00535-018-1529-0
    1. Su SY, Tang QQ. Altered Intestinal Microflora and Barrier Injury in Severe Acute Pancreatitis can be Changed by Zinc. Int J Med Sci (2021) 18(14):3050–8. doi: 10.7150/ijms.45980
    1. van den Berg FF, Hugenholtz F, Boermeester MA, Zaborina O, Alverdy JC. Spatioregional Assessment of the Gut Microbiota in Experimental Necrotizing Pancreatitis. BJS Open (2021) 5(5):zrab061. doi: 10.1093/bjsopen/zrab061
    1. Stolfi C, Maresca C, Monteleone G, Laudisi F. Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines (2022) 10(2):289. doi: 10.3390/biomedicines10020289
    1. Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-Induced Gut Dysbiosis and Barrier Disruption and the Potential Protective Strategies. Crit Rev Food Sci Nutr (2022) 62(6):1427–52. doi: 10.1080/10408398.2020.1843396
    1. Tian Y, Shu R, Lei Y, Xu Y, Zhang X, Luo H. Somatostatin Attenuates Intestinal Epithelial Barrier Injury During Acute Intestinal Ischemia-Reperfusion Through Tollip/Myeloiddifferentiationfactor 88/Nuclear Factor Kappa-B Signaling. Bioengineered (2022) 13(3):5005–20. doi: 10.1080/21655979.2022.2038450
    1. Du L, Hao YM, Yang YH, Zheng Y, Wu ZJ, Zhou MQ, et al. . DHA-Enriched Phospholipids and EPA-Enriched Phospholipids Alleviate Lipopolysaccharide-Induced Intestinal Barrier Injury in Mice via a Sirtuin 1-Dependent Mechanism. J Agric Food Chem (2022) 70(9):2911–22. doi: 10.1021/acs.jafc.1c07761
    1. Untersmayr E, Brandt A, Koidl L, Bergheim I. The Intestinal Barrier Dysfunction as Driving Factor of Inflammaging. Nutrients (2022) 14(5):949. doi: 10.3390/nu14050949
    1. Li XY, He C, Zhu Y, Lu NH. Role of Gut Microbiota on Intestinal Barrier Function in Acute Pancreatitis. World J Gastroenterol (2020) 26(18):2187–93. doi: 10.3748/wjg.v26.i18.2187
    1. Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-a Mutual Relationship. Anim (Basel) (2022) 12(2):145. doi: 10.3390/ani12020145
    1. Erdem Büyükkiraz M, Kesmen Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J Appl Microbiol (2022) 132(3):1573–96. doi: 10.1111/jam.15314
    1. Hansson GC. Mucins and the Microbiome. Annu Rev Biochem (2020) 89:769–93. doi: 10.1146/annurev-biochem-011520-105053
    1. Schütte A, Ermund A, Becker-Pauly C, Johansson ME, Rodriguez-Pineiro AM, Bäckhed F, et al. . Microbial-Induced Meprin β Cleavage in MUC2 Mucin and a Functional CFTR Channel are Required to Release Anchored Small Intestinal Mucus. Proc Natl Acad Sci U S A (2014) 111(34):12396–401. doi: 10.1073/pnas.1407597111
    1. Johansson ME, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodríguez-Piñeiro AM, et al. . Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host Microbe (2015) 18(5):582–92. doi: 10.1016/j.chom.2015.10.007
    1. Shimizu K, Ojima M, Ogura H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients (2021) 13(7):2439. doi: 10.3390/nu13072439
    1. Fritz S, Hackert T, Hartwig W, Rossmanith F, Strobel O, Schneider L, et al. . Bacterial Translocation and Infected Pancreatic Necrosis in Acute Necrotizing Pancreatitis Derives From Small Bowel Rather Than From Colon. Am J Surg (2010) 200(1):111–7. doi: 10.1016/j.amjsurg.2009.08.019
    1. Fishman JE, Levy G, Alli V, Zheng X, Mole DJ, Deitch EA. The Intestinal Mucus Layer is a Critical Component of the Gut Barrier That Is Damaged During Acute Pancreatitis. Shock (2014) 42(3):264–70. doi: 10.1097/shk.0000000000000209
    1. Chen J, Huang C, Wang J, Zhou H, Lu Y, Lou L, et al. . Dysbiosis of Intestinal Microbiota and Decrease in Paneth Cell Antimicrobial Peptide Level During Acute Necrotizing Pancreatitis in Rats. PLoS One (2017) 12(4):e0176583. doi: 10.1371/journal.pone.0176583
    1. Ahuja M, Schwartz DM, Tandon M, Son A, Zeng M, Swaim W, et al. . Orai1-Mediated Antimicrobial Secretion From Pancreatic Acini Shapes the Gut Microbiome and Regulates Gut Innate Immunity. Cell Metab (2017) 25(3):635–46. doi: 10.1016/j.cmet.2017.02.007
    1. Guo Y, Huang C, Liu L, Fu X, Lu Y, Zheng J, et al. . Paneth Cell Ablation Aggravates Pancreatic and Intestinal Injuries in a Rat Model of Acute Necrotizing Pancreatitis After Normal and High-Fat Diet. Mediators Inflammation (2019) 2019:8474523. doi: 10.1155/2019/8474523
    1. Zhu G, Hu J, Xi R. The Cellular Niche for Intestinal Stem Cells: A Team Effort. Cell Regener (2021) 10(1):1. doi: 10.1186/s13619-020-00061-5
    1. Mehandru S, Colombel JF. The Intestinal Barrier, an Arbitrator Turned Provocateur in IBD. Nat Rev Gastroenterol Hepatol (2021) 18(2):83–4. doi: 10.1038/s41575-020-00399-w
    1. Peterson LW, Artis D. Intestinal Epithelial Cells: Regulators of Barrier Function and Immune Homeostasis. Nat Rev Immunol (2014) 14(3):141–53. doi: 10.1038/nri3608
    1. Suzuki T. Regulation of the Intestinal Barrier by Nutrients: The Role of Tight Junctions. Anim Sci J (2020) 91(1):e13357. doi: 10.1111/asj.13357
    1. Wu H, Xie S, Miao J, Li Y, Wang Z, Wang M, et al. . Lactobacillus Reuteri Maintains Intestinal Epithelial Regeneration and Repairs Damaged Intestinal Mucosa. Gut Microbes (2020) 11(4):997–1014. doi: 10.1080/19490976.2020.1734423
    1. Zhao L, Xie Q, Etareri Evivie S, Liu D, Dong J, Ping L, et al. . Bifidobacterium Dentium N8 With Potential Probiotic Characteristics Prevents LPS-Induced Intestinal Barrier Injury by Alleviating the Inflammatory Response and Regulating the Tight Junction in Caco-2 Cell Monolayers. Food Funct (2021) 12(16):7171–84. doi: 10.1039/d1fo01164b
    1. Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M. Challenge to the Intestinal Mucosa During Sepsis. Front Immunol (2019) 10:891. doi: 10.3389/fimmu.2019.00891
    1. Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for Sepsis: More Than Just Fever and Leukocytosis-a Narrative Review. Crit Care (2022) 26(1):14. doi: 10.1186/s13054-021-03862-5
    1. Zheng J, Lou L, Fan J, Huang C, Mei Q, Wu J, et al. . Commensal Escherichia Coli Aggravates Acute Necrotizing Pancreatitis Through Targeting of Intestinal Epithelial Cells. Appl Environ Microbiol (2019) 85(12):e00059–19. doi: 10.1128/aem.00059-19
    1. Hao W, Hao C, Wu C, Xu Y, Jin C. Aluminum Induced Intestinal Dysfunction via Mechanical, Immune, Chemical and Biological Barriers. Chemosphere (2022) 288(Pt 2):132556. doi: 10.1016/j.chemosphere.2021.132556
    1. Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut Microbiota and Immune System Interactions. Microorganisms (2020) 8(10):1587. doi: 10.3390/microorganisms8101587
    1. Pagliari D, Saviano A, Newton EE, Serricchio ML, Dal Lago AA, Gasbarrini A, et al. . Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders. Mediators Inflamm (2018) 2018:7946431. doi: 10.1155/2018/7946431
    1. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol Rev (2017) 279(1):70–89. doi: 10.1111/imr.12567
    1. Zhu Y, Wang X, Zhu L, Tu Y, Chen W, Gong L, et al. . Lactobacillus Rhamnosus GG Combined With Inosine Ameliorates Alcohol-Induced Liver Injury Through Regulation of Intestinal Barrier and Treg/Th1 Cells. Toxicol Appl Pharmacol (2022) 439:115923. doi: 10.1016/j.taap.2022.115923
    1. Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci (2021) 22(5):2284. doi: 10.3390/ijms22052284
    1. Nakamoto N, Amiya T, Aoki R, Taniki N, Koda Y, Miyamoto K, et al. . Commensal Lactobacillus Controls Immune Tolerance During Acute Liver Injury in Mice. Cell Rep (2017) 21(5):1215–26. doi: 10.1016/j.celrep.2017.10.022
    1. Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, et al. . Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr (2021) 8:718356. doi: 10.3389/fnut.2021.718356
    1. Nishihara Y, Ogino H, Tanaka M, Ihara E, Fukaura K, Nishioka K, et al. . Mucosa-Associated Gut Microbiota Reflects Clinical Course of Ulcerative Colitis. Sci Rep (2021) 11(1):13743. doi: 10.1038/s41598-021-92870-0
    1. Atif SM, Uematsu S, Akira S, McSorley SJ. CD103-CD11b+ Dendritic Cells Regulate the Sensitivity of CD4 T-Cell Responses to Bacterial Flagellin. Mucosal Immunol (2014) 7(1):68–77. doi: 10.1038/mi.2013.25
    1. Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, et al. . Surface Components and Metabolites of Probiotics for Regulation of Intestinal Epithelial Barrier. Microb Cell Fact (2020) 19(1):23. doi: 10.1186/s12934-020-1289-4
    1. Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory Potential of Gut Microbiome-Derived Short-Chain Fatty Acids (SCFAs). Acta Biochim Pol (2019) 66(1):1–12. doi: 10.18388/abp.2018_2648
    1. Gonçalves P, Araújo JR, Di Santo JP. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflammation Bowel Dis (2018) 24(3):558–72. doi: 10.1093/ibd/izx029
    1. Mroz MS, Lajczak NK, Goggins BJ, Keely S, Keely SJ. The Bile Acids, Deoxycholic Acid and Ursodeoxycholic Acid, Regulate Colonic Epithelial Wound Healing. Am J Physiol Gastrointest Liver Physiol (2018) 314(3):G378–87. doi: 10.1152/ajpgi.00435.2016
    1. Kahalehili HM, Newman NK, Pennington JM, Kolluri SK, Kerkvliet NI, Shulzhenko N, et al. . Dietary Indole-3-Carbinol Activates AhR in the Gut, Alters Th17-Microbe Interactions, and Exacerbates Insulitis in NOD Mice. Front Immunol (2020) 11:606441. doi: 10.3389/fimmu.2020.606441
    1. Yang S, Li X, Yang F, Zhao R, Pan X, Liang J, et al. . Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Front Pharmacol (2019) 10:1360. doi: 10.3389/fphar.2019.01360
    1. Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, et al. . Enrichment of the Lung Microbiome With Gut Bacteria in Sepsis and the Acute Respiratory Distress Syndrome. Nat Microbiol (2016) 1(10):16113. doi: 10.1038/nmicrobiol.2016.113
    1. Frati F, Salvatori C, Incorvaia C, Bellucci A, Di Cara G, Marcucci F, et al. . The Role of the Microbiome in Asthma: The Gut-Lung Axis. Int J Mol Sci (2018) 20(1):123. doi: 10.3390/ijms20010123
    1. Fromentin M, Ricard JD, Roux D. Lung Microbiome in Critically Ill Patients. Life (Basel) (2021) 12(1):7. doi: 10.3390/life12010007
    1. Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Front Immunol (2019) 10:1873. doi: 10.3389/fimmu.2019.01873
    1. Wen W, Zheng H, Jiang Y, Huang L, Li D, Zhang J, et al. . Effect of Intestinal Epithelial Autophagy on Bacterial Translocation in Severe Acute Pancreatitis. Clin Res Hepatol Gastroenterol (2017) 41(6):703–10. doi: 10.1016/j.clinre.2017.03.007
    1. Keely S, Glover LE, Weissmueller T, MacManus CF, Fillon S, Fennimore B, et al. . Hypoxia-Inducible Factor-Dependent Regulation of Platelet-Activating Factor Receptor as a Route for Gram-Positive Bacterial Translocation Across Epithelia. Mol Biol Cell (2010) 21(4):538–46. doi: 10.1091/mbc.e09-07-0573
    1. Li Q, Wang C, Tang C, He Q, Li N, Li J. Bacteremia in Patients With Acute Pancreatitis as Revealed by 16S Ribosomal RNA Gene-Based Techniques. Crit Care Med (2013) 41(8):1938–50. doi: 10.1097/CCM.0b013e31828a3dba
    1. Yokoyama Y, Fukaya M, Mizuno T, Ebata T, Asahara T, Nagino M. Clinical Importance of "Occult-Bacterial Translocation" in Patients Undergoing Highly Invasive Gastrointestinal Surgery: A Review. Surg Today (2021) 51(4):485–92. doi: 10.1007/s00595-020-02126-z
    1. Arab JP, Martin-Mateos RM, Shah VH. Gut-Liver Axis, Cirrhosis and Portal Hypertension: The Chicken and the Egg. Hepatol Int (2018) 12(Suppl 1):24–33. doi: 10.1007/s12072-017-9798-x
    1. Vaishnavi C. Translocation of Gut Flora and its Role in Sepsis. Indian J Med Microbiol (2013) 31(4):334–42. doi: 10.4103/0255-0857.118870
    1. Liu Y, Chen C, Sun Q, Sun H, Liu N, Liu Q, et al. . Mesenteric Lymph Duct Drainage Attenuates Lung Inflammatory Injury and Inhibits Endothelial Cell Apoptosis in Septic Rats. BioMed Res Int (2020) 2020:3049302. doi: 10.1155/2020/3049302
    1. Zhang YM, Zhang SK, Cui NQ. Intravenous Infusion of Mesenteric Lymph From Severe Intraperitoneal Infection Rats Causes Lung Injury in Healthy Rats. World J Gastroenterol (2014) 20(16):4771–7. doi: 10.3748/wjg.v20.i16.4771
    1. González-Loyola A, Bovay E, Kim J, Lozano TW, Sabine A, Renevey F, et al. . FOXC2 Controls Adult Lymphatic Endothelial Specialization, Function, and Gut Lymphatic Barrier Preventing Multiorgan Failure. Sci Adv (2021) 7(29):eabf4335. doi: 10.1126/sciadv.abf4335
    1. Deitch EA. Gut Lymph and Lymphatics: A Source of Factors Leading to Organ Injury and Dysfunction. Ann N Y Acad Sci (2010) 1207(Suppl 1):E103–11. doi: 10.1111/j.1749-6632.2010.05713.x
    1. Assimakopoulos SF, Triantos C, Thomopoulos K, Fligou F, Maroulis I, Marangos M, et al. . Gut-Origin Sepsis in the Critically Ill Patient: Pathophysiology and Treatment. Infection (2018) 46(6):751–60. doi: 10.1007/s15010-018-1178-5
    1. Zhao D, Yang F, Wang Y, Li S, Li Y, Hou F, et al. . ALK1 Signaling is Required for the Homeostasis of Kupffer Cells and Prevention of Bacterial Infection. J Clin Invest (2022) 132(3):e150489. doi: 10.1172/jci150489
    1. Llamas MA, Aller MA, Marquina D, Nava MP, Arias J. Bacterial Translocation to Mesenteric Lymph Nodes Increases in Chronic Portal Hypertensive Rats. Dig Dis Sci (2010) 55(8):2244–54. doi: 10.1007/s10620-009-1001-3
    1. Zhang G, Jazwinski Faust A. Spontaneous Bacterial Peritonitis. Jama (2021) 325(11):1118. doi: 10.1001/jama.2020.10292
    1. Baron TH, DiMaio CJ, Wang AY, Morgan KA. American Gastroenterological Association Clinical Practice Update: Management of Pancreatic Necrosis. Gastroenterology (2020) 158(1):67–75. doi: 10.1053/j.gastro.2019.07.064
    1. Liu L, Liu W, Yan H, Cui J, Zhou J, Wang T, et al. . Abdominal Paracentesis Drainage Does Not Bring Extra Risk to Patients With Severe Acute Pancreatitis. J Clin Gastroenterol (2016) 50(5):439. doi: 10.1097/mcg.0000000000000488
    1. Huang SQ, Wen Y, Sun HY, Deng J, Zhang YL, Huang QL, et al. . Abdominal Paracentesis Drainage Attenuates Intestinal Inflammation in Rats With Severe Acute Pancreatitis by Inhibiting the HMGB1-Mediated TLR4 Signaling Pathway. World J Gastroenterol (2021) 27(9):815–34. doi: 10.3748/wjg.v27.i9.815
    1. Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, et al. . The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol (2020) 10:9. doi: 10.3389/fcimb.2020.00009
    1. Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, et al. . Distinct Molecular Phenotypes of Direct vs Indirect ARDS in Single-Center and Multicenter Studies. Chest (2015) 147(6):1539–48. doi: 10.1378/chest.14-2454
    1. Shirey KA, Blanco JCG, Vogel SN. Targeting TLR4 Signaling to Blunt Viral-Mediated Acute Lung Injury. Front Immunol (2021) 12:705080. doi: 10.3389/fimmu.2021.705080
    1. Tan JY, Tang YC, Huang J. Gut Microbiota and Lung Injury. Adv Exp Med Biol (2020) 1238:55–72. doi: 10.1007/978-981-15-2385-4_5
    1. Donovan C, Liu G, Shen S, Marshall JE, Kim RY, Alemao CA, et al. . The Role of the Microbiome and the NLRP3 Inflammasome in the Gut and Lung. J Leukoc Biol (2020) 108(3):925–35. doi: 10.1002/jlb.3mr0720-472rr
    1. Zhu CJ, Yang WG, Li DJ, Song YD, Chen SY, Wang QF, et al. . Calycosin Attenuates Severe Acute Pancreatitis-Associated Acute Lung Injury by Curtailing High Mobility Group Box 1- Induced Inflammation. World J Gastroenterol (2021) 27(44):7669–86. doi: 10.3748/wjg.v27.i44.7669
    1. Techarang T, Jariyapong P, Viriyavejakul P, Punsawad C. High Mobility Group Box-1 (HMGB-1) and its Receptors in the Pathogenesis of Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in a Mouse Model. Heliyon (2021) 7(12):e08589. doi: 10.1016/j.heliyon.2021.e08589
    1. Wu Y, Huang D, Wang X, Pei C, Xiao W, Wang F, et al. . Suppression of NLRP3 Inflammasome by Platycodin D via the TLR4/MyD88/NF-κb Pathway Contributes to Attenuation of Lipopolysaccharide Induced Acute Lung Injury in Rats. Int Immunopharmacol (2021) 96:107621. doi: 10.1016/j.intimp.2021.107621
    1. Qu L, Chen C, Chen Y, Li Y, Tang F, Huang H, et al. . High-Mobility Group Box 1 (HMGB1) and Autophagy in Acute Lung Injury (ALI): A Review. Med Sci Monit (2019) 25:1828–37. doi: 10.12659/msm.912867
    1. Dicker AJ, Crichton ML, Pumphrey EG, Cassidy AJ, Suarez-Cuartin G, Sibila O, et al. . Neutrophil Extracellular Traps are Associated With Disease Severity and Microbiota Diversity in Patients With Chronic Obstructive Pulmonary Disease. J Allergy Clin Immunol (2018) 141(1):117–27. doi: 10.1016/j.jaci.2017.04.022
    1. Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive Role of Neutrophil Extracellular Traps in Pathogen-Induced Lung Injury. JCI Insight (2018) 3(3):e98178. doi: 10.1172/jci.insight.98178
    1. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. . Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLoS One (2012) 7(2):e32366. doi: 10.1371/journal.pone.0032366
    1. Zhao J, Zhang G, Cui W, Tian B. Progress of Neutrophil Extracellular Traps in Airway Inflammation of Acute Lung Injury/Acute Respiratory Distress Syndrome: Review. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi (2020) 36(7):664–70.
    1. Conhaim RL, Mangino MJ, Dovi WF, Watson KE, Warner TF, Harms BA. Microthrombus Formation may Trigger Lung Injury After Acute Blood Loss. Shock (2010) 34(6):601–7. doi: 10.1097/SHK.0b013e3181e46e2a
    1. Ojima M, Yamamoto N, Hirose T, Hamaguchi S, Tasaki O, Kojima T, et al. . Serial Change of Neutrophil Extracellular Traps in Tracheal Aspirate of Patients With Acute Respiratory Distress Syndrome: Report of Three Cases. J Intensive Care (2020) 8:25. doi: 10.1186/s40560-020-00444-5
    1. Mikacenic C, Moore R, Dmyterko V, West TE, Altemeier WA, Liles WC, et al. . Neutrophil Extracellular Traps (NETs) Are Increased in the Alveolar Spaces of Patients With Ventilator-Associated Pneumonia. Crit Care (2018) 22(1):358. doi: 10.1186/s13054-018-2290-8
    1. Zhan Y, Ling Y, Deng Q, Qiu Y, Shen J, Lai H, et al. . HMGB1-Mediated Neutrophil Extracellular Trap Formation Exacerbates Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. J Immunol (2022) 208(4):968–78. doi: 10.4049/jimmunol.2100593
    1. Chen X, Tang J, Shuai W, Meng J, Feng J, Han Z. Macrophage Polarization and its Role in the Pathogenesis of Acute Lung Injury/Acute Respiratory Distress Syndrome. Inflammation Res (2020) 69(9):883–95. doi: 10.1007/s00011-020-01378-2
    1. Cheng P, Li S, Chen H. Macrophages in Lung Injury, Repair, and Fibrosis. Cells (2021) 10(2):436. doi: 10.3390/cells10020436
    1. Bernasconi E, Pattaroni C, Koutsokera A, Pison C, Kessler R, Benden C, et al. . Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation. Am J Respir Crit Care Med (2016) 194(10):1252–63. doi: 10.1164/rccm.201512-2424OC
    1. Christoffersen TE, Hult LT, Kuczkowska K, Moe KM, Skeie S, Lea T, et al. . In Vitro Comparison of the Effects of Probiotic, Commensal and Pathogenic Strains on Macrophage Polarization. Probiotics Antimicrob Proteins (2014) 6(1):1–10. doi: 10.1007/s12602-013-9152-0
    1. Dickson RP, Schultz MJ, van der Poll T, Schouten LR, Falkowski NR, Luth JE, et al. . Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. Am J Respir Crit Care Med (2020) 201(5):555–63. doi: 10.1164/rccm.201907-1487OC
    1. Wang J, Li R, Peng Z, Hu B, Rao X, Li J. HMGB1 Participates in LPS−induced Acute Lung Injury by Activating the AIM2 Inflammasome in Macrophages and Inducing Polarization of M1 Macrophages via TLR2, TLR4, and RAGE/Nf−κb Signaling Pathways. Int J Mol Med (2020) 45(1):61–80. doi: 10.3892/ijmm.2019.4402
    1. Sencio V, Barthelemy A, Tavares LP, Machado MG, Soulard D, Cuinat C, et al. . Gut Dysbiosis During Influenza Contributes to Pulmonary Pneumococcal Superinfection Through Altered Short-Chain Fatty Acid Production. Cell Rep (2020) 30(9):2934–47. doi: 10.1016/j.celrep.2020.02.013
    1. Li D, Ren W, Jiang Z, Zhu L. Regulation of the NLRP3 Inflammasome and Macrophage Pyroptosis by the P38 MAPK Signaling Pathway in a Mouse Model of Acute Lung Injury. Mol Med Rep (2018) 18(5):4399–409. doi: 10.3892/mmr.2018.9427
    1. Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, et al. . Exosomal miR-30d-5p of Neutrophils Induces M1 Macrophage Polarization and Primes Macrophage Pyroptosis in Sepsis-Related Acute Lung Injury. Crit Care (2021) 25(1):356. doi: 10.1186/s13054-021-03775-3
    1. Hu Q, Lyon CJ, Fletcher JK, Tang W, Wan M, Hu TY. Extracellular Vesicle Activities Regulating Macrophage- and Tissue-Mediated Injury and Repair Responses. Acta Pharm Sin B (2021) 11(6):1493–512. doi: 10.1016/j.apsb.2020.12.014
    1. Feng Z, Zhou J, Liu Y, Xia R, Li Q, Yan L, et al. . Epithelium- and Endothelium-Derived Exosomes Regulate the Alveolar Macrophages by Targeting RGS1 Mediated Calcium Signaling-Dependent Immune Response. Cell Death Differ (2021) 28(7):2238–56. doi: 10.1038/s41418-021-00750-x
    1. Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front Immunol (2020) 11:1722. doi: 10.3389/fimmu.2020.01722
    1. Opitz B, van Laak V, Eitel J, Suttorp N. Innate Immune Recognition in Infectious and Noninfectious Diseases of the Lung. Am J Respir Crit Care Med (2010) 181(12):1294–309. doi: 10.1164/rccm.200909-1427SO
    1. Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci (2021) 22(4):2108. doi: 10.3390/ijms22042108
    1. Zhao D, Wang C, Liu X, Liu N, Zhuang S, Zhang Q, et al. . CircN4bp1 Facilitates Sepsis-Induced Acute Respiratory Distress Syndrome Through Mediating Macrophage Polarization via the miR-138-5p/EZH2 Axis. Mediators Inflammation (2021) 2021:7858746. doi: 10.1155/2021/7858746
    1. Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A Master Regulator of Cellular Responses in Inflammation, Injury Resolution, and Tumorigenesis. J Leukoc Biol (2020) 108(3):787–99. doi: 10.1002/jlb.2mr0220-549r
    1. Abedi F, Hayes AW, Reiter R, Karimi G. Acute Lung Injury: The Therapeutic Role of Rho Kinase Inhibitors. Pharmacol Res (2020) 155:104736. doi: 10.1016/j.phrs.2020.104736
    1. Li R, Zhang J, Pan S, Yuan Y, Qi H, Shu H, et al. . HMGB1 Aggravates Lipopolysaccharide-Induced Acute Lung Injury Through Suppressing the Activity and Function of Tregs. Cell Immunol (2020) 356:104192. doi: 10.1016/j.cellimm.2020.104192
    1. Li R, Zou X, Huang H, Yu Y, Zhang H, Liu P, et al. . HMGB1/PI3K/Akt/mTOR Signaling Participates in the Pathological Process of Acute Lung Injury by Regulating the Maturation and Function of Dendritic Cells. Front Immunol (2020) 11:1104. doi: 10.3389/fimmu.2020.01104
    1. Miskolci V, Klemm LC, Huttenlocher A. Cell Migration Guided by Cell-Cell Contacts in Innate Immunity. Trends Cell Biol (2021) 31(2):86–94. doi: 10.1016/j.tcb.2020.11.002
    1. Wang T, Lin S, Liu R, Li H, Liu Z, Zhang X, et al. . Metabolomic Profile Perturbations of Serum, Lung, Bronchoalveolar Lavage Fluid, Spleen and Feces in LPS-Induced Acute Lung Injury Rats Based on HPLC-ESI-QTOF-Ms. Anal Bioanal Chem (2020) 412(5):1215–34. doi: 10.1007/s00216-019-02357-1
    1. Kokuho N, Terasaki Y, Kunugi S, Saito Y, Urushiyama H, Terasaki M, et al. . Analyses of Alveolar Epithelial Injury via Lipid-Related Stress in Mammalian Target of Rapamycin Inhibitor-Induced Lung Disease. Lab Invest (2019) 99(6):853–65. doi: 10.1038/s41374-018-0158-9
    1. Chen W, Chen H, Yang ZT, Mao EQ, Chen Y, Chen EZ. Free Fatty Acids-Induced Neutrophil Extracellular Traps Lead to Dendritic Cells Activation and T Cell Differentiation in Acute Lung Injury. Aging (Albany NY) (2021) 13(24):26148–60. doi: 10.18632/aging.203802
    1. Wang Z, Ma P, Wang Y, Hou B, Zhou C, Tian H, et al. . Untargeted Metabolomics and Transcriptomics Identified Glutathione Metabolism Disturbance and PCS and TMAO as Potential Biomarkers for ER Stress in Lung. Sci Rep (2021) 11(1):14680. doi: 10.1038/s41598-021-92779-8
    1. Huang Y, Ji Q, Zhu Y, Fu S, Chen S, Chu L, et al. . Activated Platelets Autocrine 5-Hydroxytryptophan Aggravates Sepsis-Induced Acute Lung Injury by Promoting Neutrophils Extracellular Traps Formation. Front Cell Dev Biol (2021) 9:777989. doi: 10.3389/fcell.2021.777989
    1. Kim JY, Piao C, Kim G, Lee S, Lee MS, Jeong JH, et al. . Combined Delivery of a Lipopolysaccharide-Binding Peptide and the Heme Oxygenase-1 Gene Using Deoxycholic Acid-Conjugated Polyethylenimine for the Treatment of Acute Lung Injury. Macromol Biosci (2017) 17(8):1600490. doi: 10.1002/mabi.201600490
    1. Fei J, Fu L, Hu B, Chen YH, Zhao H, Xu DX, et al. . Obeticholic Acid Alleviate Lipopolysaccharide-Induced Acute Lung Injury via Its Anti-Inflammatory Effects in Mice. Int Immunopharmacol (2019) 66:177–84. doi: 10.1016/j.intimp.2018.11.005
    1. Ying XD, Wei G, An H. Sodium Butyrate Relieves Lung Ischemia-Reperfusion Injury by Inhibiting NF-κb and JAK2/STAT3 Signaling Pathways. Eur Rev Med Pharmacol Sci (2021) 25(1):413–22. doi: 10.26355/eurrev_202101_24409
    1. Lee JG, Lee J, Lee AR, Jo SV, Park CH, Han DS, et al. . Impact of Short-Chain Fatty Acid Supplementation on Gut Inflammation and Microbiota Composition in a Murine Colitis Model. J Nutr Biochem (2022) 101:108926. doi: 10.1016/j.jnutbio.2021.108926
    1. Peterson CT, Perez Santiago J, Iablokov SN, Chopra D, Rodionov DA, Peterson SN. Short-Chain Fatty Acids Modulate Healthy Gut Microbiota Composition and Functional Potential. Curr Microbiol (2022) 79(5):128. doi: 10.1007/s00284-022-02825-5
    1. Lei Y, Tang L, Liu S, Hu S, Wu L, Liu Y, et al. . Parabacteroides Produces Acetate to Alleviate Heparanase-Exacerbated Acute Pancreatitis Through Reducing Neutrophil Infiltration. Microbiome (2021) 9(1):115. doi: 10.1186/s40168-021-01065-2
    1. Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential Novel Therapeutics for Microbiota-Gut-Brain Axis Dysfunction Across Gender and Lifespan. Pharmacol Ther (2022) 231:107978. doi: 10.1016/j.pharmthera.2021.107978
    1. Chaiyasut C, Sivamaruthi BS, Lailerd N, Sirilun S, Khongtan S, Fukngoen P, et al. . Probiotics Supplementation Improves Intestinal Permeability, Obesity Index and Metabolic Biomarkers in Elderly Thai Subjects: A Randomized Controlled Trial. Foods (2022) 11(3):268. doi: 10.3390/foods11030268
    1. Lee M, Chang EB. Inflammatory Bowel Diseases (IBD) and the Microbiome-Searching the Crime Scene for Clues. Gastroenterology (2021) 160(2):524–37. doi: 10.1053/j.gastro.2020.09.056
    1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. . Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat Rev Gastroenterol Hepatol (2014) 11(8):506–14. doi: 10.1038/nrgastro.2014.66
    1. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. . Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat Rev Gastroenterol Hepatol (2017) 14(8):491–502. doi: 10.1038/nrgastro.2017.75
    1. Liu Y, Wang J, Wu C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-Biotics, and Post-Biotics. Front Nutr (2021) 8:634897. doi: 10.3389/fnut.2021.634897
    1. Stavropoulou E, Bezirtzoglou E. Probiotics in Medicine: A Long Debate. Front Immunol (2020) 11:2192. doi: 10.3389/fimmu.2020.02192
    1. Bottari B, Castellone V, Neviani E. Probiotics and COVID-19. Int J Food Sci Nutr (2021) 72(3):293–9. doi: 10.1080/09637486.2020.1807475
    1. Camilleri M. Human Intestinal Barrier: Effects of Stressors, Diet, Prebiotics, and Probiotics. Clin Transl Gastroenterol (2021) 12(1):e00308. doi: 10.14309/ctg.0000000000000308
    1. Parada Venegas D, de la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. . Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol (2019) 10:277. doi: 10.3389/fimmu.2019.00277
    1. Pujo J, Petitfils C, Le Faouder P, Eeckhaut V, Payros G, Maurel S, et al. . Bacteria-Derived Long Chain Fatty Acid Exhibits Anti-Inflammatory Properties in Colitis. Gut (2021) 70(6):1088–97. doi: 10.1136/gutjnl-2020-321173
    1. Durmaz S, Kurtoğlu T, Barbarus E, Çetin NK, Yılmaz M, Rahman ÖF, et al. . Probiotic Saccharomyces Boulardii Alleviates Lung Injury by Reduction of Oxidative Stress and Cytokine Response Induced by Supraceliac Aortic Ischemia-Reperfusion Injury in Rats. Braz J Cardiovasc Surg (2021) 36(4):515–21. doi: 10.21470/1678-9741-2020-0153
    1. Karen M, Yuksel O, Akyürek N, Ofluoğlu E, Cağlar K, Sahin TT, et al. . Probiotic Agent Saccharomyces Boulardii Reduces the Incidence of Lung Injury in Acute Necrotizing Pancreatitis Induced Rats. J Surg Res (2010) 160(1):139–44. doi: 10.1016/j.jss.2009.02.008
    1. Takauji S, Konishi H, Fujiya M, Ueno N, Tanaka H, Sato H, et al. . Polyphosphate, Derived From Lactobacillus Brevis, Modulates the Intestinal Microbiome and Attenuates Acute Pancreatitis. Dig Dis Sci (2021) 66(11):3872–84. doi: 10.1007/s10620-020-06747-9
    1. Mantis NJ, Rol N, Corthésy B. Secretory IgA's Complex Roles in Immunity and Mucosal Homeostasis in the Gut. Mucosal Immunol (2011) 4(6):603–11. doi: 10.1038/mi.2011.41
    1. Wan YD, Zhu RX, Bian ZZ, Sun TW. Effect of Probiotics on Length of Hospitalization in Mild Acute Pancreatitis: A Randomized, Double-Blind, Placebo-Controlled Trial. World J Gastroenterol (2021) 27(2):224–32. doi: 10.3748/wjg.v27.i2.224
    1. Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci (2021) 22(13):6729. doi: 10.3390/ijms22136729
    1. Zhong Y, Cai D, Cai W, Geng S, Chen L, Han T. Protective Effect of Galactooligosaccharide-Supplemented Enteral Nutrition on Intestinal Barrier Function in Rats With Severe Acute Pancreatitis. Clin Nutr (2009) 28(5):575–80. doi: 10.1016/j.clnu.2009.04.026
    1. He Y, Wu C, Li J, Li H, Sun Z, Zhang H, et al. . Inulin-Type Fructans Modulates Pancreatic-Gut Innate Immune Responses and Gut Barrier Integrity During Experimental Acute Pancreatitis in a Chain Length-Dependent Manner. Front Immunol (2017) 8:1209. doi: 10.3389/fimmu.2017.01209
    1. Pham VT, Calatayud M, Rotsaert C, Seifert N, Richard N, Van den Abbeele P, et al. . Antioxidant Vitamins and Prebiotic FOS and XOS Differentially Shift Microbiota Composition and Function and Improve Intestinal Epithelial Barrier In Vitro . Nutrients (2021) 13(4):1125. doi: 10.3390/nu13041125
    1. Gou S, Yang Z, Liu T, Wu H, Wang C. Use of Probiotics in the Treatment of Severe Acute Pancreatitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit Care (2014) 18(2):R57. doi: 10.1186/cc13809
    1. Sharma B, Srivastava S, Singh N, Sachdev V, Kapur S, Saraya A. Role of Probiotics on Gut Permeability and Endotoxemia in Patients With Acute Pancreatitis: A Double-Blind Randomized Controlled Trial. J Clin Gastroenterol (2011) 45(5):442–8. doi: 10.1097/MCG.0b013e318201f9e2
    1. Zhu Y, Mei Q, Fu Y, Zeng Y. Alteration of Gut Microbiota in Acute Pancreatitis and Associated Therapeutic Strategies. BioMed Pharmacother (2021) 141:111850. doi: 10.1016/j.biopha.2021.111850
    1. Kaku N, Matsumoto N, Sasaki D, Tsuda K, Kosai K, Uno N, et al. . Effect of Probiotics on Gut Microbiome in Patients With Administration of Surgical Antibiotic Prophylaxis: A Randomized Controlled Study. J Infect Chemother (2020) 26(8):795–801. doi: 10.1016/j.jiac.2020.03.008
    1. Sornsenee P, Singkhamanan K, Sangkhathat S, Saengsuwan P, Romyasamit C. Probiotic Properties of Lactobacillus Species Isolated From Fermented Palm SAP in Thailand. Probiotics Antimicrob Proteins (2021) 13(4):957–69. doi: 10.1007/s12602-021-09754-y
    1. Li YS. Rational Use of Antibiotics in Severe Acute Pancreatitis: Controversy and Progress. Zhonghua Yi Xue Za Zhi (2021) 101(30):2346–8. doi: 10.3760/cma.j.cn112137-20210307-00580
    1. Soares FS, Amaral FC, Silva NLC, Valente MR, Santos LKR, Yamashiro LH, et al. . Antibiotic-Induced Pathobiont Dissemination Accelerates Mortality in Severe Experimental Pancreatitis. Front Immunol (2017) 8:1890. doi: 10.3389/fimmu.2017.01890
    1. Jacobs MC, Lankelma JM, Wolff NS, Hugenholtz F, de Vos AF, van der Poll T, et al. . Effect of Antibiotic Gut Microbiota Disruption on LPS-Induced Acute Lung Inflammation. PLoS One (2020) 15(11):e0241748. doi: 10.1371/journal.pone.0241748
    1. Leppäniemi A, Tolonen M, Tarasconi A, Segovia-Lohse H, Gamberini E, Kirkpatrick AW, et al. . 2019 WSES Guidelines for the Management of Severe Acute Pancreatitis. World J Emerg Surg (2019) 14:27. doi: 10.1186/s13017-019-0247-0
    1. Wittekamp BHJ, Oostdijk EAN, Cuthbertson BH, Brun-Buisson C, Bonten MJM. Selective Decontamination of the Digestive Tract (SDD) in Critically Ill Patients: A Narrative Review. Intensive Care Med (2020) 46(2):343–9. doi: 10.1007/s00134-019-05883-9
    1. Bauer M. The Liver-Gut-Axis: Initiator and Responder to Sepsis. Curr Opin Crit Care (2022) 28(2):216–20. doi: 10.1097/mcc.0000000000000921
    1. Secombe KR, Al-Qadami GH, Subramaniam CB, Bowen JM, Scott J, Van Sebille YZA, et al. . Guidelines for Reporting on Animal Fecal Transplantation (GRAFT) Studies: Recommendations From a Systematic Review of Murine Transplantation Protocols. Gut Microbes (2021) 13(1):1979878. doi: 10.1080/19490976.2021.1979878
    1. Ng SC, Kamm MA, Yeoh YK, Chan PKS, Zuo T, Tang W, et al. . Scientific Frontiers in Faecal Microbiota Transplantation: Joint Document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE). Gut (2020) 69(1):83–91. doi: 10.1136/gutjnl-2019-319407
    1. Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ. Clinical Application and Potential of Fecal Microbiota Transplantation. Annu Rev Med (2019) 70:335–51. doi: 10.1146/annurev-med-111717-122956
    1. El-Salhy M, Hatlebakk JG, Gilja OH, Bråthen Kristoffersen A, Hausken T. Efficacy of Faecal Microbiota Transplantation for Patients With Irritable Bowel Syndrome in a Randomised, Double-Blind, Placebo-Controlled Study. Gut (2020) 69(5):859–67. doi: 10.1136/gutjnl-2019-319630
    1. Ding L, He C, Li X, Huang X, Lei Y, Ke H, et al. . Efficacy and Safety of Faecal Microbiota Transplantation for Acute Pancreatitis: A Randomised, Controlled Study. Front Med (Lausanne) (2021) 8:772454. doi: 10.3389/fmed.2021.772454
    1. Yin GF, Li B, Fan XM. Effects and Mechanism of Fecal Transplantation on Acute Lung Injury Induced by Lipopolysaccharide in Rats. Zhonghua Yi Xue Za Zhi (2019) 99(20):1582–7. doi: 10.3760/cma.j.issn.0376-2491.2019.20.013
    1. Tang J, Xu L, Zeng Y, Gong F. Effect of Gut Microbiota on LPS-Induced Acute Lung Injury by Regulating the TLR4/NF-kB Signaling Pathway. Int Immunopharmacol (2021) 91:107272. doi: 10.1016/j.intimp.2020.107272
    1. Yang C, Wang T, Chen J, He J, Li Y, Chen C, et al. . Traditional Chinese Medicine Formulas Alleviate Acute Pancreatitis: Pharmacological Activities and Mechanisms. Pancreas (2021) 50(10):1348–56. doi: 10.1097/mpa.0000000000001931
    1. Xu Q, Wang M, Guo H, Liu H, Zhang G, Xu C, et al. . Emodin Alleviates Severe Acute Pancreatitis-Associated Acute Lung Injury by Inhibiting the Cold-Inducible RNA-Binding Protein (CIRP)-Mediated Activation of the NLRP3/IL-1β/CXCL1 Signaling. Front Pharmacol (2021) 12:655372. doi: 10.3389/fphar.2021.655372
    1. Li J, Han J, Lv J, Wang S, Qu L, Jiang Y. Saikosaponin A-Induced Gut Microbiota Changes Attenuate Severe Acute Pancreatitis Through the Activation of Keap1/Nrf2-ARE Antioxidant Signaling. Oxid Med Cell Longev (2020) 2020:9217219. doi: 10.1155/2020/9217219
    1. Ji C, Lu F, Wu Y, Lu Z, Mo Y, Han L, et al. . Rhubarb Enema Increasing Short-Chain Fatty Acids That Improves the Intestinal Barrier Disruption in CKD May be Related to the Regulation of Gut Dysbiosis. BioMed Res Int (2022) 2022:1896781. doi: 10.1155/2022/1896781
    1. Zou XP, Chen M, Wei W, Cao J, Chen L, Tian M. Effects of Enteral Immunonutrition on the Maintenance of Gut Barrier Function and Immune Function in Pigs With Severe Acute Pancreatitis. JPEN J Parenter Enteral Nutr (2010) 34(5):554–66. doi: 10.1177/0148607110362691
    1. McClave SA. Factors That Worsen Disease Severity in Acute Pancreatitis: Implications for More Innovative Nutrition Therapy. Nutr Clin Pract (2019) 34 Suppl 1:S43–8. doi: 10.1002/ncp.10371
    1. Zhao XL, Zhu SF, Xue GJ, Li J, Liu YL, Wan MH, et al. . Early Oral Refeeding Based on Hunger in Moderate and Severe Acute Pancreatitis: A Prospective Controlled, Randomized Clinical Trial. Nutrition (2015) 31(1):171–5. doi: 10.1016/j.nut.2014.07.002
    1. Sun JK, Mu XW, Li WQ, Tong ZH, Li J, Zheng SY. Effects of Early Enteral Nutrition on Immune Function of Severe Acute Pancreatitis Patients. World J Gastroenterol (2013) 19(6):917–22. doi: 10.3748/wjg.v19.i6.917
    1. Arutla M, Raghunath M, Deepika G, Jakkampudi A, Murthy HVV, Rao GV, et al. . Efficacy of Enteral Glutamine Supplementation in Patients With Severe and Predicted Severe Acute Pancreatitis- a Randomized Controlled Trial. Indian J Gastroenterol (2019) 38(4):338–47. doi: 10.1007/s12664-019-00962-7

Source: PubMed

3
Subskrybuj